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Capitolo 1

L’ultimo teorema di Fermat per
n = 4k.

L’obiettivo di queste note è dimostrare l’ultimo teorema di Fermat nel caso
n = 4k, con k ∈ N+, ovvero dimostrare che non possono esistere X, Y e Z
interi (con XY Z 6= 0) tali che

X4k + Y 4k = Z4k. (1)

Partiamo con il seguente:

Lemma 1. Siano a, b ∈ N+ coprimi. Se esiste x ∈ N+ tale che ab = x2,
allora esistono A,B ∈ N+ tali che a = A2 e b = B2. Inoltre, (A,B) = 1.

Dimostrazione. Se a = 1 oppure b = 1, la tesi è banale. Supponiamo d’ora
in poi ab 6= 1. Per il teorema fondamentale dell’aritmetica, a e b si possono
scomporre come:

a = pα1
1 · · · pαn

n , b = qβ11 · · · qβmm ,

dove p1, . . . , pn e q1, . . . , qm sono primi distinti, mentre α1, . . . , αn e β1, . . . , βm
sono opportuni interi positivi. Ora, siccome x2 = ab, x avrà la forma:

x = p
α′
1

1 · · · pα
′
n
n · q

β′
1

1 · · · qβ
′m

m · sγ11 · · · s
γk
k ,

dove s1, . . . , sk sono numeri primi, mentre α′
1, . . . , α

′
n, β′

1, . . . , β
′
m, γ′1, . . . , γ

′
k

sono interi positivi. Quindi, dato che x2 = ab, per l’unicità della scompo-
sizione in fattori primi otteniamo che αi = 2α′

i (i = 1, . . . , n), βi = 2β′
i

(i = 1, . . . ,m) e γi = 0 (i = 1, . . . , k). La tesi segue notando che:

a = p
2α′

1
1 · · · p2α′

n
n =

(
p
α′
1

1 · · · pα
′
n
n

)2

= A2,

b = q
2α′

1
1 · · · q2β′

n
n =

(
q
β′
1

1 · · · qβ
′
m
m

)2

= B2.
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Dato che i fattori primi di A = p
α′
1

1 · · · p
α′
n
n e B = q

β′
1

1 · · · q
β′
m
m sono distinti,

chiaramente (A,B) = 1.

Nota 1. Non è difficile notare che il lemma anteriore continua a valere nel
caso in cui si abbia un prodotto di più interi coprimi a due a due. Se x ∈ N+

e a1, . . . , an sono tali che a1 · · · an = x2 con (ai, aj) = 1 per ogni i 6= j, allora
esistono A1, . . . , An ∈ N+ tali che ai = A2

i per ogni i = 1, . . . , n.

Esempio 1. Utilizziamo il lemma anteriore per risolvere l’equazione diofan-
tea

4X2 + 28X − 15 = Y 2

Dobbiamo determinare tutti gli interi X e Y tali che 4X2 + 28X − 15 = Y 2.
Se X e Y sono soluzioni dell’equazione, allora (2X − 1)(2X + 15) = Y 2.
Osserviamo che 2X− 1 e 2X+ 15 sono coprimi per ogni valore di X. Infatti
se p è un eventuale divisore primo comune, esso dovrebbe essere dispari,
tuttavia si avrebbe 2X + 15 ≡ 0 (mod p) e 2X − 1 ≡ 0 (mod p). Sottraendo
membro a membro, si avrebbe 16 ≡ 0 (mod p), da cui p = 2, che è assurdo.
Per il lemma precedente, consegue che esistono due interi a e b tali che
2X + 15 = a2 e 2X − 1 = b2. Sottraendo membro a membro, si trova
a2 − b2 = 16, da cui a = 5 e b = 3 oppure a = 4 e b = 0. Segue che X = 5 e
Y = 15 oppure Y = −15 (mentre non ci sono soluzioni intere corrispondenti
ad a = 4, b = 0). Sostituendo tali valori nell’equazione iniziale si ottengono
delle identità, quindi le uniche soluzioni sono (5, 15) e (5,−15).

Esempio 2. Trovare le soluzioni intere positive dell’equazione:

X3 − Y 2Z2 − 7X = 0.

Sia (x, y, z) una soluzione con x, y e z interi positivi. Allora x(x2 − 7) =
(yz)2. Sia d = (x, x2 − 7). Allora d | x e d | x2 − 7, quindi d | 7 e
necessariamente d = 1 oppure d = 7.

Se d = 1, allora esistono, per il lemma 1, a e b interi positivi tali che
x = a2 e x2 − 7 = b2. Quindi a4 − 7 = b2 da cui (a2 − b)(a2 + b) = 7.
Dato che a2 − b < a2 + b e 7 è primo, deve essere a2 − b = 1 e a2 + b = 7,
quindi a = 2, b = 3 e x = 4, yz = 6. Le possibili coppie di soluzioni sono
(y, z) = (2, 3) e (y, z) = (1, 6) (oltre a quelle con z e y scambiati).

Se invece d = 7 allora x = 7v e x2 − 7 = 7u con u e v interi coprimi.
Segue che uv = (yz/7)2 quindi, sempre per il lemma 1, u = a2 e v = b2,
con a e b interi positivi. Allora x2 − 7 = 7a2, ed, essendo x = 7v, si ha
7v2 = a2 + 1 e cioè a2 ≡ −1 (mod 7), che è assurdo perché −1 non è un
residuo quadratico mod 7.
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Esercizio 1. Si dimostri che l’equazione diofantea

4X4 − 16X3 + 20X2 − 8X − 3 = Y 2

non ha soluzioni.

Iniziamo ora lo studio delle terne pitagoriche.

Definizione 1. Una terna pitagorica è una terna di numeri interi positivi
(X, Y, Z) tali che X2 + Y 2 = Z2.

L’esempio più famoso è la terna (3, 4, 5), ma ci sono in realtà infinite
possibilità. Per esempio, per ogni intero positivo k, la terna (3k, 4k, 5k) è
pitagorica. Per il teorema di Pitagora, i triangoli le cui lunghezze dei lati
formano una terna pitagorica sono rettangoli. Non è difficile osservare che,
se (X, Y, Z) è una terna pitagorica tale che due suoi qualsiasi elementi hanno
un fattore comune, allora anche il terzo lo ha. Quindi i fattori di una terna
o sono tutti mutualmente coprimi oppure hanno tutti un fattore comune.
Queste osservazioni portano alla definizione di terna pitagorica primitiva.

Definizione 2. Sia (X, Y, Z) una terna pitagorica. Essa è detta primitiva
se (X, Y, Z) = 1.

Consideriamo una terna pitagorica primitiva (a, b, c). Per quanto appena
detto, (a, c) = (a, b) = (b, c) = 1. Inoltre a e b hanno parità opposta.
Infatti, essendo coprimi non possono essere entrambi pari, ma non possono
nemmeno essere entrambi dispari, altrimenti c sarebbe pari (cioè c = 2j per
un opportuno intero j) e quindi, se a = 2h + 1, b = 2k + 1 (per opportuni
h e k interi), si avrebbe a2 + b2 = 4(k2 + h2 + k + h) + 2 ≡ 2 (mod 4),
mentre c2 ≡ 0 (mod 4). Nel seguito, assumeremo che a sia pari e b dispari,
ma ovviamente il loro ruolo è del tutto simmetrico.

Teorema 1. Esistono infinite terne pitagoriche primitive.

Dimostrazione. Siano m ed n interi positivi con m > n, (m,n) = 1 e parità
opposta. Come vedremo nel teorema seguente, le soluzioni dell’equazione di
Pitagora sono date dalle seguenti formule (formule di Euclide):

a = 2mn;

b = m2 − n2;

c = m2 + n2.

(2)

Dato che

a2 + b2 = 4m2n2 +m4 − 2m2n2 + n4 = (m2 + n2)2 = c2,
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la terna (a, b, c) è pitagorica. Dimostriamo ora che è primitiva, cioè che
(a, b, c) = 1. Supponiamo che p sia un numero primo che divide a, b e c.
Siccome m ed n hanno parità opposta, b è dispari, quindi p 6= 2. Se p > 2,
p divide a e quindi uno tra m ed n, ad esempio n. Ma p divide anche b e
quindi, dato che n2 = m2 − b, divide anche n, che è assurdo essendo m ed n
coprimi per costruzione. Segue che (a, b, c) è primitiva.

Nasce allora la seguente domanda: tutte le terne pitagoriche primitive
hanno la forma (2)? La risposta è positiva, come afferma il seguente:

Teorema 2. Sia (a, b, c) una terna pitagorica primitiva (con a pari). Allora
esistono m,n ∈ N+, con m > n, (m,n) = 1 e parità opposta, tali che:

a = 2mn, b = m2 − n2, c = m2 + n2. (3)

Dimostrazione. Abbiamo a2 = c2 − b2 = (c − b)(c + b). Siccome a, c − b e
c + b sono tutti pari, esistono tre interi r, s e t tali che a = 2r, c− b = 2s e
c+ b = 2t, da cui, sommando e sottraendo:

r2 = st, b = t− s, c = t+ s.

I numeri s e t sono primi tra loro. Infatti, se per assurdo p è un primo che
divide sia s che t, allora divide anche t+ s = c e t− s = b, che è un assurdo.
Dato che st = r2, per il lemma anteriore esistono m ed n interi positivi tali
che s = n2 e t = m2 (si noti che t > s e quindi m > n). Sostituendo, si
ottengono le formule (3).

Per finire osserviamo che, essendo s e t coprimi, lo sono anche m ed n, e,
dato che n2 +m2 = c con c dispari, m ed n hanno parità opposta.

Nota 2. Si può aggiungere che, se m ed n non sono coprimi oppure non sono
entrambi dispari, allora la terna (a, b, c) definita dalla (2) è pitagorica ma non
primitiva. Le formule di Euclide possono quindi generare terne sia primitive
che derivate. Esistono però terne derivate non esprimibili tramite le formule
di Euclide, per esempio (9, 12, 15). Per esprimere tutte le terne pitagoriche,
sia primitive che derivate, si può usare la seguente formula generatrice, in
funzione dei tre interi positivi k, m ed n:

a = k · (2mn);

b = k · (m2 − n2);

c = k · (m2 + n2).

Al variare di m ed n (coprimi e di parità opposta), le formule di Euclide
(2) restituiscono tutte le terne primitive una ed una sola volta. Infatti,
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assumendo che esistano due coppie di interi positivi (m,n) ed (h, k) tali che

a = m2 − n2 = k2 − h2,
b = 2mn = 2kh,

c = m2 + n2 = k2 + h2,

allora sommando e sottraendo la prima e la terza equazione, si trova m = k
ed n = h.

Esercizio 2. Dimostrare che, se (a, b, c) è una terna pitagorica, allora il
prodotto abc è multiplo di 60.

Esercizio 3. Dimostrare che, se (a, b, c) è una terna pitagorica primitiva, c
non è multiplo di 3.

Esercizio 4.

Esistono terne pitagoriche (a, b, c) in cui c = b+ 1? Sono primitive?

Esercizio 5.

I numeri triangolari Tk sono numeri della forma Tk = k(k+1)/2 per qualche
k ∈ N, e corrispondono alla somma dei primi k numeri interi positivi. Ver-
ificare che, per ogni k ∈ N+, esiste una terna primitiva (a, b, c) tale che
b = 4Tk.

Teorema 3 (ultimo teorema di Fermat per n = 4k). Sia k ∈ N+. Allora
non esiste (X, Y, Z) ∈ Z3, con XY Z 6= 0, tale che X4k + Y 4k = Z4k.

Dimostrazione. Supponiamo che per assurdo esista (x, y, z) ∈ Z3, con xyz 6=
0, tale che x4k + y4k = z4k. Allora X = xk, Y = yk e Z = zk sono tre interi
tali che X4 + Y 4 = Z4 e XY Z 6= 0. Ora, detto d = (X, Y, Z), definiamo
X ′ = X/d, Y ′ = Y/d e Z ′ = (Z/d)2. X ′, Y ′ e Z ′ sono coprimi, perché
d = (X, Y, Z). Inoltre X ′Y ′Z ′ 6= 0, e vale:

X ′4 + Y ′4 = Z ′2. (4)

Quindi anche X ′, Y ′ e Z ′ sono tre interi coprimi il cui prodotto è non nullo
e X ′4 + Y ′4 = Z ′2. Quindi l’insieme

K =
{
z ∈ N+ : ∃(x, y) ∈ Z2 : x4 + y4 = z2, xyz 6= 0, (x, y, z) = 1

}
⊂ N

è non vuoto. Essendo K un sottoinsieme non vuoto di N, ammette minimo,
diciamolo w. Quindi, essendo w ∈ K, esistono due interi u e v tali che u4 +
v4 = w2, uvw 6= 0 e (u, v, w) = 1. Siccome (u2, v2, w) è una terna pitagorica
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primitiva, devono esistere due interi coprimi p e q, di parità opposta e tali
che p > q > 0 per cui (assumendo senza perdita di generalità che u sia pari):

u2 = 2pq, v2 = p2 − q2, w = p2 + q2.

Dalla seconda equazione deduciamo che p2 = q2+v2 e pertanto anche (q, v, p)
è una terna pitagorica primitiva e quindi esistono due interi a e b coprimi, di
parità opposta, con a > b > 0, tali che:

q = 2ab, v = a2 − b2, p = a2 + b2.

Ora, a, b e p sono interi a due a due coprimi tali che u2 = 4abp e quindi, per
il lemma 1, esistono U , V e W interi positivi coprimi tali che:

a = U2, b = V 2, p = W 2.

Tuttavia dal fatto che p = a2 + b2 si deduce:

W 2 = U4 + V 4.

Ma allora W ∈ K e W < W 2 = p < p2 + q2 = w, da cui W < w, che è un
assurdo essendo w = min(K).

Nota 3. Si noti che, nel corso della dimostrazione del teorema precedente,
abbiamo verificato che neppure l’equazione (4) ammette soluzioni (questo
procedimento è dovuto allo stesso Fermat). La condizione (X ′, Y ′, Z ′) = 1 è
in realtà ininfluente. Se infatti esistesse un fattore comunue a ∈ N+ tale che
per esempio X ′ = aξ e Y ′ = aυ, allora:

(aξ)4 + (aυ)4 = (Z ′)2,

e quindi esiste ζ ∈ N+ tale che Z ′ = a2ζ e quindi ξ4 + υ4 = ζ2. Essendo
ζ < Z ′, applicando ancora il principio del buon ordinamento si conclude che
non può esistere una soluzione neppure se (X ′, Y ′) 6= 1. Si raggiunge la
medesima conclusione se (X ′, Z ′) 6= 1 oppure (Y ′, Z ′) 6= 1.

Esempio 3. Dimostriamo che per ogni k ∈ N+ il numero 21/(4k) non è
razionale. Sia k ∈ N+ e supponiamo per assurdo che 21/(4k) sia razionale.
Allora 21/(4k) = a/b per opportuni interi a e b non nulli. Quindi:

2 =
(
21/(4k)

)4k
=

(a
b

)4k

=
a4k

b4k
=⇒ 2b4k = b4k + b4k = a4k,

che è assurdo per l’ultimo teorema di Fermat appena dimostrato.
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Esempio 4. Risolviamo l’equazione diofantea

X(X2 + 1) = Y 4. (5)

Ovviamente (X, Y ) = (0, 0) è una soluzione (banale). Supponiamo ora che
(X, Y ) 6= (0, 0). Se per assurdo X fosse pari, esisterebbe un intero K tale
che X = 2K e quindi 2K(4K2 + 1) = Y 4. Ora, siccome 2K e 4K2 + 1
sono coprimi (se per assurdo p dividesse 2K, allora dividerebbe (2K)2 =
4K2 e quindi non potrebbe dividere 4K2 + 1), si avrebbe che 2K = a2 e
4K2 + 1 = b2 per opportuni interi coprimi a e b, e quindi a4 + 14 = b2. Ma
nella dimostrazione del teorema 3, abbiamo mostrato che l’equazione (4) non
ammette soluzioni non banali.

Supponiamo quindi che X sia dispari, ovvero X = 2Q+ 1 per un qualche
intero Q. Sostituendo nella (5), si ottiene 2(2Q + 1)(2Q2 + 2Q + 1) = Y 4.
Questo vuol dire che Y è pari, diciamo Y = 2P , da cui (2Q+ 1)(2Q2 + 2Q+
1) = 8P 4, che è un assurdo perché i due membri hanno parità opposta.

In conclusione, l’equazione (5) non ha soluzioni non banali.

Esercizio 6. Determinare le soluzioni dell’equazione diofantea:

X6 − 4X3Y 2 − 4Z4 = 0.
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