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Abstract. Let G be a finite non-simple, non-cyclic group with the property

that all proper normal subgroups of G are cyclic. We call such a group NCS
group, short for Normal Cyclic Subgroups. In this paper, after presenting

some basic properties of these groups, we provide a complete classification. In

particular, we show that an NCS groups is either the non-cyclic group of order
p2, with p prime, or Q8, or a particular Z-group, or is a cyclic extension of a

finite simple group.

1. Introduction

Let C be a class of groups. A finite group G is said to be C-critical, or min-
imal non-C, if G itself does not belong to C, but all of its proper subgroups do.
For example, a minimal non-cyclic group is a finite non-cyclic group in which all
proper subgroups are cyclic. Many authors have investigated these groups for some
classes C, with the goal of achieving a complete classification of minimal non-C.
The first significant result in this area was obtained in [10], where the authors have
classified minimal non-abelian groups and minimal non-cyclic groups. Later, classi-
fications have been achieved also for minimal non-nilpotent groups (including some
generalizations of these), and for minimal non-supersolvable groups (see [4], [8], [3]
respectively).
Alongside, some authors have explored groups containing a specific family of sub-
groups within C. The most notable example in this sense is the study of groups
in which all Sylow p-subgroups are cyclic. These groups, introduced by Suzuki in
[13] and known as Z-groups, will play a key role in the proof of our main result.
Z-groups have been fully classified, see Section 3 below.

In this paper, we study groups in which all normal subgroups belong to a certain
class of groups C.
Let G be a finite non-simple group and let N (G) denote the set of all proper normal
subgroups of G. If G is non-cyclic and all the elements of N (G) are cyclic, we say
that G is an NCS group, short for Normal Cyclic Subgroups.
The smallest example of this kind of group is S3, the symmetric group of degree
3, which has A3 = C3 as its unique normal subgroup. This example is somewhat
trivial since all of its subgroups are cyclic. Naturally, if G is a minimal non-cyclic
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group, then G is also an NCS group. However, the converse is not true. The
smallest example illustrating this is the dihedral group D18 of order 18. All of its
normal subgroups are cyclic, yet it contains S3 as a subgroup, which is not cyclic.
Our main result provides a complete classification of NCS groups.

Theorem 1.1. Let G be a finite group. Then, G is an NCS group if, and only if,
G is one of the following.

(1.1) G ∼= Cp × Cp, where p is a prime.
(1.2) G = Q8, the quaternion group.
(1.3) G is a group with the following presentation

G = ⟨a, b | am = bp
α1
1 = 1, bab−1 = ar⟩,

with m = pα2
2 pα3

3 · · · pαt
t , t > 0, p1 < p2 < · · · < pn primes, αi integers

for i = 1, . . . , t and

(m, pα1
1 ) = (m, r − 1) = 1, rp1 ≡ 1 mod m.

(1.4) G is a perfect group with a unique maximal normal subgroup, which fits
in a short exact sequence of the form

1 → C → G→ S → 1,

where S is a simple group and C is cyclic. Moreover, all possibilities for
S and C are listed in Table 1.

Observe that among the groups appearing in Theorem 1.1, those of type 1.1
and Q8 are minimal non-cyclic. A group of type 1.3 is minimal non-cyclic if and
only ifm = q for some prime q, while a group of type 1.4 is never minimal non-cyclic.

Groups of this type have already been classified in [5] (in Italian). Our approach
here is completely independent and different. Furthermore, we are able to provide
additional insights compared to [5] in the case of perfect groups. Consequently, we
manage to complete the previous classification with a description of all the possi-
bilities for the simple group S and the normal cyclic group C of the short exact
sequence appearing in the case 1.4 of Theorem 1.1.

The paper is organized as follows. In Section 2, we present some basic properties
of NCS groups. Additionally, we recall the definition and some properties of super-
solvable groups, which will be used in the proof of Theorem 1.1. We then proceed
with the proof of Theorem 1.1. The proof is divided in two cases. In Section 3, we
address the case where G′ is a proper subgroup of G, while in Section 4, we handle
the case where G is perfect.

2. Preliminaries

In this section, we show some basic and generic results about NCS groups.

Lemma 2.1. Let G be an NCS group. Then, every non-simple quotient of G is
either cyclic or an NCS group.

Proof. Take N ⊴ G. Suppose that N is not maximal, and that G/N is not cyclic.
Take H/N ⊴ G/N . Then, N ⊴ H ⊴ G. Since H is cyclic, H/N must also be
cyclic. □
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Simple group S C is a non-trivial subgroup of Comments
An C2 n = 5 or n ≥ 8
An C6 n = 6, 7

PSLn(q) C(n,q−1) (n, q) ̸= (2, 4), (2, 9), (3, 2), (3, 4),
(n, q − 1) ̸= 1.

PSL2(4) C2

PSL2(9) C6

PSL3(2) C2

PSL3(4) C12

PSp2n(q) C2 q odd, (n, q) ̸= (3, 2)
PSp6(2) C2

PSUn(q) C(n,q+1) (n, q) ̸= (4, 2), (4, 3), (6, 2)
(n, q + 1) ̸= 1

PSU4(2) C2

PSU4(3) C12

PSU6(2) C6

Ω2n+1(q) C2 (n, q) ̸= (3, 2), (3, 3)
q odd.

Ω7(2) C2

Ω7(3) C6

Ω+
2n(q) C2 (n, q) ̸= (4, 2),

n even, (4, qn − 1) ̸= 1
Ω+

8 (2) C2

Ω+
2n(q) C(4,qn−1) n odd, (4, qn − 1) ̸= 1

Ω−
2n(q) C(4,qn−1) (4, qn − 1) ̸= 1
E6(q) C3 (3, q − 1) ̸= 1
E7(q) C2 (2, q − 1) ̸= 1
F4(2) C2

G2(3) C3

G2(4) C2
2E6(q

2) C3 q ̸= 2, (3, q + 1) ̸= 1
2E6(4) C6
2B2(8) C4

M12 C2

M22 C12

Jn Cn n = 2, 3
Co1 C2

Fi22 C6

Fi′24 C3

HS C2

McL C3

Ru C2

Suz C6

O′N C3

B C2

Table 1. NCS quasisimple groups
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The NCS property does not necessarily pass to subgroups. For example, consider
G = SL2(7). G has a unique proper normal subgroup, which is its center, and this
is cyclic, so G is an NCS group. However, G has a 2-Sylow subgroup isomorphic
to the generalized quaternion group of order 16, Q16. The group Q16, in turn, has
the quaternion group Q8 as normal subgroup, which is not cyclic.

Recall now that a group G is said to be supersolvable if it has a normal series
with cyclic quotients between consecutive terms, that is a series

1 = G0 ⊴ G1 ⊴ G2 ⊴ · · · ⊴ Gn−1 ⊴ Gn = G,

where Gi ⊴ G and Gi/Gi−1 is cyclic, for all i = 1, . . . , n.
We need two basic facts about supersolvable groups.

Lemma 2.2. [1, Lemma 2.17] Let G be a finite group with G′ cyclic, where G′ =
[G,G] is the commutator subgroup. Then G is supersolvable.

Lemma 2.3. [6, Theorem 4.24] Let G be a finite supersolvable group, and let p be
the smallest prime dividing the order of G. Then, the elements of order prime to
p form a normal π-Hall subgroup of G, where π is the set of primes dividing the
order of G different from p.

A group G is said to be a Z-group if all of its Sylow subgroups are cyclic. As we
already said, Z-groups have been completely classified. In particular, we have the
following theorem.

Theorem 2.4. [9, Theorem 9.4.3] Let G be a Z-group. Then,

G = ⟨a, b | am = bn = 1, bab−1 = ar⟩,
with (m,n) = (m, r − 1) = 1, and rn ≡ 1 mod m. Moreover, m = |G′| and
n = |G/G′|.

The subgroups and normal subgroups of these groups are well known, and are
described by the following theorem.

Theorem 2.5. [14, Theorem 1] Let G be a Z-group with presentation as above.
The normal subgroups of G are the subgroups of the form

N = ⟨am1 , bn1⟩,
with m1|(m, rn1 − 1), n1|n.

3. Proof of Theorem 1.1: Case G′ < G

We start with the abelian case, that is, G′ = 1.

Proposition 3.1. Let G be a finite abelian group. Then, G is an NCS group if,
and only if, G = Cp × Cp for some prime p.

Proof. The group Cp × Cp is trivially an NCS group.
Suppose that G is a finite abelian NCS group. Since G is abelian, we have G =
Cpα1

1
× · · · × Cpαt

t
, for some primes p1, . . . , pt (not necessary distinct), and some

integers α1, . . . , αt, and with t ≥ 2. Suppose that t ≥ 3. If the primes are pairwise
distinct, then G is cyclic. Thus, there exist two indexes i, j such that pi = pj . This
implies that Cpi × Cpi is a non-cyclic normal subgroup of G, which is impossible.
Thus, t = 2, and G = Cpα ×Cpβ . Suppose that one between α and β is greater then



NCS GROUPS 5

1. Then, Cp ×Cp is a non-cyclic normal subgroup of G, which is again impossible.
Hence α = β = 1, and G = Cp × Cp. □

We now move to the non-abelian case. To start with, we analyze the case where
the group is a p-group.

Lemma 3.2. Let G be a non-abelian NCS p-group, for some prime p. Then, the
following hold.

(3.1) Every subgroup of G is cyclic.
(3.2) G admits a unique subgroup of order p.

Proof.

(3.1) Since G is a p-group, every maximal subgroup of G is normal. In par-
ticular, every maximal subgroup of G is cyclic. But every subgroup is
contained in a maximal subgroup, so every subgroup is cyclic.

(3.2) Consider the center of G, which is a non-trivial cyclic subgroup of G,
and take a subgroup H of the center of order p. Since the center is
characteristic in G, H ⊴ G. Suppose now that K is another subgroup of
G of order p. Thus, HK ≤ G is a cyclic subgroup of G and |HK| ≤ p2.
Thus, H and K are two subgroups of order p of a cyclic group, implying
that H = K.

□

Proposition 3.3. Let G be a non-abelian p-group, for some prime p. Then, G is
an NCS group if, and only, if G = Q8.

Proof. The proper normal subgroups of Q8 are isomorphic either to C4 or to C2,
so Q8 is an NCS group.
Suppose now that G is a non-abelian NCS p-group. By Lemma 3.2, every subgroup
of G is cyclic, and G admits a unique subgroup of order p. By [12, Theorem 9.7.3],
G = Q2n , the generalized quaternion group, with n > 2. Aiming for a contradiction,
suppose that n ≥ 4. Thus, since 2n−2 ≥ 4, the dihedral group D2n−2 contains a
proper non-cyclic subgroup. But G/Z(G) = D2n−2 . Thus, also G admits a non-
cyclic subgroup, which is a contradiction. Thus n = 3 and G = Q8. □

From now on, we may suppose that G is a non-abelian NCS group, and that
G is not a p-group. Recall that a group G is called Z-group if all of its Sylow
p-subgroups are cyclic.

Proposition 3.4. If G is an NCS group, which is not a p-group, and 1 ̸= G′ < G,
then G is a Z-group.

Proof. Since G′ is normal in G, G′ is cyclic. By Lemma 2.2, G is supersolvable.
Let |G| = pα1

1 pα2
2 · · · pαt

t , where p1 < p2 < · · · < pt are distinct primes, αi are non-
negative integers and t > 1. Thus, by Lemma 2.3, G has a normal π-Hall subgroup
N of order m = pα2

2 · · · pαt
t , where π = {p2, . . . , pt}. In particular, N = Cm. Now,

if P is a Sylow p-subgroup of G, with p ∈ π, then P ≤ Cm, hence P is cyclic. It
remains to prove that every p1-Sylow subgroup of G is cyclic.
For, let H be a p1-Sylow subgroup of G. Thus, G = Cm ⋊φ H, for some φ : H →
Aut(Cm). Since G/Cm = H, by Lemma 2.1, either H is simple, or H is an NCS
group. If H is simple, then H = Cp1 . If H is not simple, then, by Proposition 3.1
and Proposition 3.3, there are three possibilities for H: either is cyclic of order pα1

1 ,
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or is Q8, or is Cp1 ×Cp1 . We claim that the only possibility here is that H = Cpα1
1
,

for some α1 > 0.
Aiming for a contradiction, suppose that H = Q8. Since C4 ⊴ Q8, Cm ⋊ψ C4 ⊴
Cm ⋊φQ8 = G, where ψ is the restriction of φ to C4. Recall that Q8 has 3 normal
subgroups isomorphic to C4, and their union covers Q8. Since G is an NCS group,
we have that

Cm ⋊ψ C4 = C4m = C4 × Cm,

since (m, 4) = 1. This holds for each of the three copies of C4 inside Q8, implying
that ψ is the identity for each C4, so that φ is also the identity. But then G =
Cm ×Q8, and this is a contradiction, since Q8 is not cyclic.
In a very similar way, we can show that H cannot be Cp × Cp, and this concludes
the proof. □

Remark. IfG is a Z-group, it is not necessarily an NCS group. The smallest example
is the group of order 20 with presentation

G = ⟨a, b | a5 = b4 = 1, bab−1 = a4⟩.
This is the group with identifier (20, 3) in the Small Groups library in GAP [7],
and it is easy to see that this has a normal subgroup isomorphic to D10, which is
not cyclic.

With this in hand, we can state the following proposition, which classifies all
NCS groups with proper commutator subgroup, which are not p-groups. Before,
we need a very basic number theoretic lemma.

Lemma 3.5. Let m,n, r be three integers. Suppose that (m,n) = (m, r − 1) = 1
and that rn1 ≡ 1 mod m for any n1|n, with n1 ̸= 1. Then, n = pα for some prime
p.

Proof. Let d be the order of r modulo m, that is, the smallest integer such that
rd ≡ 1 mod m. Since (m, r − 1) = 1, d > 1. Let n1 ̸= 1 be a divisor of n. Since
rn1 ≡ 1 mod m, we have that d|n1. So, n has a divisor which divides every other
divisor of n, and this can happen if and only if n = pα for some prime p. □

Proposition 3.6. Let G be a Z-group with presentation

G = ⟨a, b | am = bn = 1, bab−1 = ar⟩,
with (m,n) = 1, (m, r − 1) = 1 and rn ≡ 1 mod m. Then, G is an NCS group if
and only if n = pα, for some prime p such that p < q for any prime q dividing m,
and rp ≡ 1 mod m.

Proof. Observe that |G′| = m, and |G/G′| = n. Suppose first that G is an NCS
group, and let

N = ⟨a, bn1⟩ ⊴ G,

for some divisor n1|n, n1 ̸= 1. Since N is cyclic, its generators commute, that is

bn1ab−n1 = a.

An easy computation shows that

bn1ab−n1 = ar
n
1 .

In conclusion, we have ar
n1

= a, that is ar
n1−1 = 1, and this happens if and only

if rn1 ≡ 1 mod m. By Lemma 3.5, we have that n = pα for some prime p. Let
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|G| = pα1
1 · · · pαt

t , where p1 < p2 < . . . pt are primes, αi are non-negative integers
and t > 1. Since G is supersolvable, G admits a normal subgroup N of order
pα2
2 · · · pαt

t . We have showed, in the proof of Proposition 3.4, that G/N is abelian.
In particular, G′ ≤ N . Now, we have that nm = pα|G′| = pα1

1 |N |. Therefore,
p1|pα|G′|. However, G′ ≤ N , and therefore p1|pα, and thus p1 = p and G′ = N .
Suppose now that n = pα for some prime p less then all the prime divisors of m,
and that rp ≡ 1 mod m. Take N to be a normal subgroup of G. By Theorem 2.5,
N is generated by

N = ⟨am1 , bp
β

⟩,
for some m1|(m, rp

β − 1), and some β ≤ α. An easy computation shows that

(1) bp
β

am1b−p
β

= am1r
pβ

,

hence ⟨am1⟩ ⊴ N . In particular, N is the semidirect product of the cyclic groups

generated by am1 and bp
β

respectively. Thus, N is cyclic if and only if

bp
β

am1b−p
β

= am1 .

so that, by (1), N is cyclic if and only if

am1(r
pβ−1) = 1.

Now rp ≡ 1 mod m, so that for every β we have rp
β ≡ 1 mod m, and thus

am1(r
pβ−1) = 1.

In conclusion, N is cyclic. Since N is arbitrary, G is an NCS group. □

Remark. In the example above, m = 5, p = 2 and r = 2. In this case, rp is
not congruent to 1 modulo 5, hence, as we have seen, the group is not an NCS
group. However, if we take r = −1, then rp ≡ 1 mod 5, and G = ⟨a, b | a5 = b4 =
1, bab−1 = a−1⟩ is an NCS group.

4. Proof of Theorem 1.1: Case G′ = G

In this case, G is perfect. We require the following known lemma, of which we
report the very short proof.

Lemma 4.1. Let G be a perfect group and let N be a cyclic normal subgroup of G.
Then, N ≤ Z(G).

Proof. Since N is normal in G, we have NG(N)/CG(N) = G/CG(N) ≤ Aut(N).
N is cyclic, so its automorphism group is abelian. Therefore, G/CG(N) is abelian,
implying that CG(N) ≥ G′ = G, so that CG(N) = G, which yields N ≤ Z(G). □

Lemma 4.2. Let G be a perfect NCS group. Then, G is quasisimple.

Proof. If N ⊴ G, then N is cyclic. By Lemma 4.1, N ≤ Z(G), so that Z(G) is a
maximal normal subgroup of G. □

To continue our analysis, we need some basic results about perfect central ex-
tensions and the Schur multiplier.
Recall that a central extension of a group G is a pair (H,α) such that we have the
following short exact sequence:

1 → Z → H
α−→ G→ 1,
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where Z ≤ Z(H). If H is a perfect group, then the central extension is said to be
perfect.
If G is a perfect group, then G admits a special central extension, called universal
central extension of G, denoted with (G̃, π). The kernel of π is called the Schur
multiplier of G, and it is denoted by H2(G,Z). This extension has the property
that for any other perfect central extension of G, say (H,φ), kerφ is a quotient of
H2(G,Z). We refer the reader to [2] for a detailed discussion of this material.

Proposition 4.3. Let G be a perfect group. Then, G is an NCS group if, and only
if, G has a unique maximal normal subgroup and it fits into a short exact sequence
of the form

1 → C → G→ S → 1,

where S is a simple group, and C is a cyclic group isomorphic to a quotient of the
Schur multiplier of S.

Proof. Suppose that G is an NCS perfect group. Then, By Lemma 4.2, Z(G) is
the unique maximal normal subgroup of G, and G fits into a short exact sequence
of the form

1 → Z(G) → G→ S → 1,

where S = G/Z(G) is simple. Moreover, S is also perfect, since

S′ =

(
G

Z(G)

)′

=
Z(G)G′

Z(G)
=

G

Z(G)
= S.

Let (S̃, π) be the universal central extension of S. Thus, we have an exact sequence
of the form

1 → H2(S,Z) → S̃ → S → 1.

But, since also G is a perfect central extension of S, we have that

Z(G) ∼=
H2(S,Z)

N
,

for some N ⊴ H2(S,Z).
Suppose now that G fits into a short exact sequence of the form

1 → C → G→ S → 1,

where S is simple, and C is cyclic a quotient of the Schur multiplier of S. Since
G/C is simple, C is the unique maximal normal subgroup. Therefore, every normal
subgroup of G is contained in C, and hence it is cyclic. □

Let G be a perfect NCS group. Then, G fits into a short exact sequence

1 → C → G→ S → 1,

where S is a simple group, and C is a quotient of the Schur multiplier of S.
By the Classification Theorem of Finite Simple Groups, we can list all possibilities
of the couple (C, S): these are reported in Table 1.
First of all, we have to exclude all simple groups with trivial Schur multiplier.
If S is a simple group with cyclic Schur multiplier, we can take as C all the possible
quotients of the Schur multiplier.
Thus, it remains to work with the simple groups with non-cyclic non-trivial Schur
multiplier, which are reported in Table 2 (we use [11] to see the Schur multiplier of
all simple groups).
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S H2(S,Z) Comments
PSL3(4) C12 × C4

Ω+
2n(q) C2 × C2 n even, (4, qn − 1) = 4

Ω+
8 (2) C2 × C2

PSU4(3) C12 × C3

PSU6(2) C6 × C2
2E6(2

2) C6 × C2
2B2(8) C2 × C2

Table 2. Finite simple groups with non-trivial non-cyclic Schur multiplier

We now illustrate with an example how Table 1 is constructed for these groups.
Suppose that G is an NCS perfect central extension of the simple group S =
PSL3(4). Thus, G fits in a short exact sequence of the form

1 → C12 × C4

N
↪→ G→ PSL3(4) → 1,

for N ⊴ C12 ×C4 and (C12 ×C4)/N = Z(G). Since G is an NCS group, and every
normal subgroup of G is a subgroup of (C12 ×C4)/N , this last group has to be an
NCS group. So we need to consider all NCS quotients of C12 × C4. In particular,
such a quotient must be cyclic. In conclusion, all the possible choices for N are the
following (up to isomorphism):

C12, C4, C4 × C4, C4 × C2.

Summing up, the NCS perfect groups which are a central extension of S = PSL3(4)
are extension by S of one of the following cyclic groups

C4, C12, C3, C6.

For all the other groups in Table 2, Theorem 1.1 is proved in a similar fashion.

In Table 1, all simple groups S with non-trivial Schur multiplier are reported in
the first column. In the second column, there are all possible cyclic groups with
which we can extend the group S and obtain an NCS group.
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