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Capitolo 1

L’anello degli interi di Gauss.

1.1 Definizione di Z [i] e norma.

Nel seguito C è considerato munito delle operazioni usuali di somma e prodotto.

Definizione 1. L’insieme degli interi di Gauss è l’insieme:

Z [i] := {a+ ib : a, b ∈ Z} ⊂ C

e un generico elemento di Z [i] è detto intero di Gauss.

Proposizione 1. Z [i] è un sottoanello di C.

Dimostrazione. Banalmente (Z [i] , +) è un sottogruppo di C dato che, se a+ ib e c+ id
sono elementi di Z [i], allora (a+ ib) + (c+ id) = (a+ c) + i(b+ d) ∈ Z [i] e −(a+ ib) =
−a + i(−b) ∈ Z [i]. Inoltre (a + ib)(c + id) = (ac − bd) + i(ad + bc) ∈ Z [i] e poi
1C = 1 + i0 ∈ Z [i].

Segue dunque immediatamente dalla proposizione anteriore che (Z [i],+,·) è un do-
minio di integrità (anello commutativo unitario in cui ab = 0 implica a = 0 o b = 0).
La prima domanda cui siamo interessati a rispondere è: quali sono le unità di Z [i] (cioè
gli elementi invertibili di Z [i] rispetto al prodotto ·)? Per farlo cogliamo l’occasione per
definire un oggetto importante, la norma di un intero di Gauss.

Definizione 2. Se α = a + ib ∈ Z [i], è detta norma di α il numero naturale N(α) =
a2 + b2.

Con un calcolo diretto si mostra che l’applicazione N : Z [i] −→ N è moltiplicativa:
∀α, γ ∈ Z [i], N(αγ) = N(α)N(γ). Questo fatto ci permette di dimostrare in maniera
agevole la seguente proposizione.

Proposizione 2. Le unità di Z [i] sono 1, −1, i, −i.

Dimostrazione. Ovviamente 1, −1, i e −i sono unità di Z [i]. Mostriamo che sono le
uniche. Sia α = a + ib un’unità di Z [i] e sia γ il suo inverso moltiplicativo, quindi
αγ = 1. Allora N(αγ) = 1 da cui N(α)N(γ) = 1 ovvero N(α) = 1. Segue che a2+ b2 = 1
e quindi le quattro possibilità: a = 1, b = 0, che portano ad α = 1; a = −1, b = 0, che
portano ad α = −1; a = 0, b = 1, che portano ad α = i; e l’ultima, a = 0, b = −1, che
porta ad α = −i.
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Capitolo 1. L’anello degli interi di Gauss. 4

1.2 Z [i] è un dominio euclideo.
In Z vale la proprietà notevole che ogni intero si scrive in maniera unica (a meno di
moltiplicare per 1 o −1) come prodotto di potenze di primi distinti. Ci si domanda se
tale proprietà valga anche in Z [i]. Come vedremo tra poco tale proprietà è rispettata.
Diamo inanzitutto la definizione di primo in Z [i]:

Definizione 3. α ∈ Z [i]\{0, 1,−1, i,−i} è detto primo se p = ab implica che a è un’unità
oppure b è un’unità.

Osservazione 1. In generale se p è un primo di Z non è necessariamente primo in Z [i].
Si pensi ad esempio a 5, che è primo in Z ma non in Z [i], dato che 5 = (1− 2i)(1 + 2i).
Anche 2 è primo in Z ma non in Z [i] dato che 2 = (1− i)(1+ i). Ci sono tuttavia primi
di Z che sono primi anche in Z [i]. Ad esempio 3 è un primo sia in Z che in Z [i]. Per
vedere questo fatto ragioniamo per assurdo. Supponiamo che 3 = ab con a, b ∈ Z [i] e a,
b non unità di Z [i] e quindi N(a), N(b) > 1. Abbiamo che 9 = N(3) = N(a)N(b) da cui
N(a) = 3 e N(b) = 3. Se quindi a = x + iy abbiamo x2 + y2 = 3, da cui y2 = 3 − x2.
Deduciamo che x ∈ {−1, 0, 1}. Se x = −1 o x = 1 troviamo y2 = 2 che è assurdo essendo
2 primo in Z; se x = 0 troviamo y2 = 3 che è assurdo essendo 3 primo in Z. Più avanti
dimostreremo che se p è un primo di Z tale che p = 3 (mod 4), allora p è primo in Z [i].

Per stabilire se un intero di Gauss è primo risulta utile anche la seguente:

Proposizione 3. Sia α ∈ Z [i]. Se N(α) è primo in Z, allora α è primo in Z [i].

Dimostrazione. Supponiamo che α = ab con a, b interi di Gauss. Siccome N(α) =
N(a)N(b) e N(α) è primo deduciamo che uno tra N(a) e N(b) vale 1 e quindi che uno
tra a e b è un’unità.

Osservazione 2. Il viceversa non è vero. Se α è primo in Z [i], non necessariamente
N(α) è primo in Z. Si pensi ad esempio a 3 che è primo in Z [i] ma ha norma 9.

Definizione 4. Siano α, β ∈ Z [i]. Diciamo che α divide β e scriviamo α | β se β = αγ
per qualche γ ∈ Z [i].

Osservazione 3. Osserviamo che se α, β ∈ Z [i] tali che α | β, allora N(α) | N(β).
Infatti β = αγ con γ ∈ Z [i], da cui segue che N(β) = N(α)N(γ) e quindi N(α) divide
N(β).

Ricordiamo allora la nozione di massimo comun divisore:

Definizione 5. Siano α, β ∈ Z [i] non nulli. Un massimo comun divisore di α e β è un
elemento d ∈ Z [i] tale che d | α, d | β e d ha norma massimale.

Osservazione 4. Osserviamo che se α e β ammettono come massimo comun divisore d
allora anche −d, id, −id sono massimi comun divisori per α e β. In effetti questi sono
gli unici massimi comun divisori di α e β. Infatti se d e d′ sono due massimi comun
divisori, allora d divide d′ (mostrarlo per esercizio) quindi d′ = dk con k intero di Gauss.
Segue che N(d′) = N(d)N(k) = N(d′)N(k) da cui N(k) = 1 e quindi k è un’unità.

Definizione 6. Siano α, β ∈ Z [i] non nulli. Essi sono detti coprimi, e scriviamo (α, β) =
1, se 1 è un massimo comun divisore di α e β.
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Capitolo 1. L’anello degli interi di Gauss. 5

Enunciamo un teorema, dovuto a Bezout, che si dimostra in maniera analoga a a
quanto si fa in Z.

Teorema 1. Siano α, β ∈ Z [i] non nulli e d un massimo comun divisore tra α e β.
Allora esistono x, y ∈ Z [i] tali che d = αx+ βy. Inoltre α e β sono coprimi se e solo se
esistono x, y ∈ Z [i] tali che 1 = αx+ βy.

Ricordiamo la seguente:

Definizione 7. Sia R un dominio di integrità. R è detto dominio euclideo se esiste una
funzione (detta funzione euclidea) δ: R \ {0} −→ N tale che:

∀a, b ∈ R : b ̸= 0, ∃c, r ∈ R : a = cb+ r, con δ(r) < δ(b) ∨ r = 0.

Teorema 2. Z [i] è un dominio euclideo.

Dimostrazione. Mostriamo che N : Z [i] \ {0} −→ N è una funzione euclidea. Siano
a, b ∈ Z [i] : b ̸= 0. Se b divide a allora a = cb per qualche c ∈ Z [i], e quindi la tesi è
soddisfatta con c ed r = 0. Se invece b non divide a allora esiste x + iy ∈ Z [i] tale che
N(ab−1 − (x + iy)) ≤

√
2/2 < 1, dove b−1 è l’inverso moltiplicativo di b in C. Poniamo

allora c = x + iy e r = a − cb. Sia ora M : C −→ N, z = m + in 7−→ m2 + n2.
Similmente a come si fa per N si mostra che M è moltiplicativa e banalmente N ristretta
a Z [i] coincide con N . Adesso c ed r sono elementi di Z [i] tali che a = cb + r e poiché
M(rb−1) = M(ab−1 − c) = M(ab−1 − (x + iy)) ≤

√
2/2 < 1 si trova N(r) = M(r) <

M(b) = N(b).

Ricordando che i domini euclidei sono domini a fattorizzazione unica, abbiamo il
seguente corollario:

Corollario 1. Z [i] è un dominio a fattorizzazione unica (UFD). Ovvero, se α ∈ Z [i] \
{0, 1,−1, i,−i}, allora esistono p1, . . . , pn primi di Z [i] tali che:

α = p1 · · · pn.

Inoltre, se q1, . . . , qm sono primi di Z [i] tali che α = q1 · · · qm, allora n = m e ∀i =
1, . . . , n ∃j ∈ {1, . . . , n} tale che pi = uqj per qualche unità u di Z [i].

Esercizio 1.2.1. Nel prossimo capitolo faremo ampio uso dei seguenti fatti che
lasciamo come stimolanti esercizi per il lettore (alcuni sono immediati).

1. Provare che, se α ∈ Z [i], allora N(α) = 0 (mod 2) ⇐⇒ 1 + i | α.

2. Se α, β ∈ Z [i] con N(β) | N(α), è vero che β | α?

3. Se α, β ∈ Z [i] con N(β) = N(α), è vero che β = uα per qualche unità u di Z [i]?

4. Se α, β ∈ Z [i] con (N(β), N(α)) = 1, provare che (α, β) = 1.

5. Siano α, β, γ ∈ Z [i] con (α, β) = 1 e α | βγ. Provare che α | γ.

6. Siano α, β, γ ∈ Z [i] con (α, β) = 1, α | γ e β | γ. Provare che αβ | γ.

7. Se α ∈ Z [i] \ {0} e d | α e N(d) = N(α), provare che d = uα per qualche unità u
di Z [i].
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Capitolo 1. L’anello degli interi di Gauss. 6

8. Se α ∈ Z [i] e u unità allora (α, u) = 1.

9. Se α, β ∈ Z [i] ammettono un’unita come massimo comun divisore, allora sono
coprimi.

10. Fattorizzare in primi 3 + 4i e 2319 + 1694i.

11. Se α, β ∈ Z [i] e d è un loro massimo comun divisore, allora d | α + β, d | α − β e
d | αβ.

12. Provare che 1 + i è primo.

13. Se u ∈ Z [i] è un’unità, dimostrare che esiste v ∈ Z [i] tale che u = v3.
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Capitolo 2

Applicazioni alle equazioni diofantee.

Per noi un’equazione diofantea è un’equazione della forma P (x1, . . . , xn) = 0, essen-
do P (x1, . . . , xn) un polinomio a coefficienti interi in n incognite. Ovvero formalmente
P (x1, . . . , xn) ∈ Z [x1, . . . , xn]. Risolvere l’equazione diofantea P (x1, . . . , xn) = 0 signifi-
ca trovare tutti gli interi a1, . . . , an tali che P (a1, . . . , an) = 0. Generalmente, risolvere
un’equazione diofantea non è affatto semplice. Si pensi alla celebre equazione diofantea
proposta da Fermat: xn + yn = zn con n naturale maggiore di 2. Prima di essere com-
pletamente risolta, si sono dovuti attendere più di 300 anni. Con la teoria sviluppata
per l’anello degli interi di Gauss Z [i], possiamo risolvere alcune equazioni diofantee che
a prima acchito possono sembrare ostiche.

2.1 Le terne Pitagoriche.
La prima equazione diofantea che vogliamo studiare è x2 + y2 = z2. Ovvero vogliamo
determinare tutte le terne di interi (A,B,C) soluzioni dell’equazione x2+y2 = z2, ovvero
tali che A2 + B2 = C2. Banalmente le terne (0, k, k) e (k, 0, k), al variare di k in Z,
sono soluzione. Tuttavia esistono anche altre terne di soluzioni, come (3, 4, 5). Vogliamo
determinarle tutte nel caso (A,B) = 1. Sebbene ci siano vari metodi per farlo, noi useremo
il fatto che Z [i] è un dominio a fattorizzazione unica. Per lo studio più dettagliato sulle
terne pitagoriche si rimanda il lettore alle note “L’ultimo teorema di Fermat nel caso
n = 4k” che si trova nei file PDF del gruppo Facebook “Problemi di Matematica”.

Teorema 3. Se A,B,C sono interi tali che A2 +B2 = C2 e (A,B) = 1, allora esistono
m,n interi tali che A = m2−n2, B = 2mn, C = m2+n2 oppure A = 2mn, B = m2−n2,
C = m2 + n2. Viceversa, per ogni m,n ∈ Z, si ha (m2 − n2)2 + (2mn)2 = (m2 + n2)2.

Dimostrazione. Abbiamo (A− iB)(A+ iB) = C2. Ma A− iB e A+ iB sono coprimi in
Z [i]. Infatti, sia d un massimo comun divisore tra essi. Proviamo che d è unità. Poiché
d | A− iB e d | A+ iB, allora d divide la loro somma e la loro differenza: d | 2A e d | i2B
e quindi d | 2A e d | 2B (poiché (d, i) = 1). Se proviamo che (d, 2) = 1 allora d | A e
d | B ed essendo A e B coprimi in Z (e quindi coprimi anche in Z [i]) si avrebbe d unità.
Sia M un massimo comun divisore tra d e 2, e supponiamo per assurdo che M non sia
un unità. Abbiamo che M | 2 = −i(1 + i)2 quindi M | (1 + i)2 (poiché (M,−i) = 1).
Adesso vediamo che 1 + i divide M . Di fatto sia R un massimo comun divisore tra M e
1 + i. Se R è un’unità, allora (M, 1 + i) = 1, e segue che M | 1 + i. Se invece R non è
unità allora, poiché R divide 1+ i si avrebbe che 1+ i = uR, e quindi R = v(1+ i) con v
unità. Allora 1 + i divide R, da cui segue che N(R) è pari. Tuttavia R divide M quindi
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Capitolo 2. Applicazioni alle equazioni diofantee. 8

N(R) divide N(M), da cui segue che N(M) è pari, ma M divide d quindi N(d) è pari
ma d divide C2, quindi N(d) divide N(C2) = C4, da cui segue che C4 è pari, e quindi C
è pari. Allora, essendo A e B coprimi in Z, si ha che A = 1 (mod 2)e B = 1 (mod 2), da
cui A2 = 1 (mod 4) e B2 = 1 (mod 4), da cui segue che C2 = 2 mod 4, che è assurdo
perché i quadrati modulo 4 sono solo 0 e 1. Conseguentemente R è unità e quindi M
divide 1+ i. Allora non essendo M unità, si ha che M = h(1+ i) con h unità e si perviene
quindi all’assurdo che C è pari. Conseguentemente M è unità e quindi (d, 2) = 1 e cioè d
è unità. Quindi A− iB e A+ iB sono coprimi in Z [i]. Adesso, siccome A− iB e A+ iB
sono coprimi e il loro prodotto è un quadrato per il fatto che Z [i] è UFD esiste un unità
u e due interi c, d tali che A + iB = u(m + in)2 = u(m2 − n2 + i2mn). Di conseguenza,
identificando parte reale e immaginaria se:

1. u = 1: troviamo A = m2 − n2, B = 2mn, C = m2 + n2;

2. u = −1: troviamo A = n2 −m2, B = 2(−m)n, C = m2 + n2;

3. u = i: troviamo A = 2(−m)n, B = m2 − n2, C = m2 + n2;

4. u = −i: troviamo A = 2mn, B = n2 −m2, C = m2 + n2.

In ogni caso esistono sempre due interi c, d tali che A = c2 − d2, B = 2cd, C = c2 + d2,
oppure A = 2cd, B = c2 − d2, C = c2 + d2. Il viceversa del teorema è immediato.

2.2 Una cubica

Un’equazione diofantea simile alla precedente è la seguente: x2 + y2 = z3. Anche per
questa, usiamo la fattorizzazione unica di Z [i] per ricavare tutte le terne primitive cioè
quelle per cui (x, y) = 1.

Teorema 4. Se a, b, c sono interi tali che a2+ b2 = c3 con (a, b) = 1, allora esistono m,n
interi tali che a = m3−3mn2, b = 3m2n−n3, c = m2+n2. Viceversa per ogni m,n ∈ Z,
(m3 − 3mn2)2 + (3m2n− n3)2 = (m2 + n2)3.

Dimostrazione. Il viceversa della dimostrazione è immediato. Adesso osserviamo che c è
dispari. Infatti a e b sono coprimi, quindi non possono essere entrambi pari. Se fossero
entrambi dispari avremmo che c3 = 2 (mod 8), che è assurdo. Segue che (a meno di
scambiare i nomi) a è pari e b è dispari. Segue che c è dispari. Adesso (a−ib)(a+ib) = c3.
Tuttavia a− ib e a+ ib sono coprimi. Infatti se d è un massimo comun divisore di a− ib
e a + ib, allora d divide 2a, d divide 2b e d divide c3. Quindi N(d) divide 4a2, 4b2 e c6.
Segue che N(d) è dispari quindi N(d) divide a2 e N(d) divide b2. Ma poiché a e b sono
coprimi segue che N(d) è 1 quindi d è unità. Adesso siccome Z [i] è UFD e ogni unità è
il cubo di un intero di Gauss si ha che a + ib = (m + in)3 con m,n interi. Uguagliando
parte reale e immaginaria si trova a = m3 − 3mn2, b = 3m2n− n3, c = m2 + n2.

2.3 Un’equazione di Mordell.

Le equazioni di Mordell sono equazioni diofantee della forma y2 = x3 + k, con k intero
non nullo. Si è dimostrato che il numero di soluzioni intere di tale equazione è un numero
finito per ogni k. Studiamo il caso k = −1 usando la fattorizzazione unica di Z [i].
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Teorema 5. L’unica soluzione intera dell’equazione di Mordell y2 = x3 − 1 è (1, 0).

Dimostrazione. Ovviamente (1, 0) è soluzione. Viceversa mostriamo che se (x, y) è solu-
zione allora x = 1 e y = 0. Di fatto x3 = (y − i)(y + i). Vediamo che y − i e y + i sono
coprimi. Sia d un massimo comun divisore tra essi. Allora d divide 2i = (1 + i)2 quindi
(1 + i)2 = γd per qualche γ ∈ Z [i]. Per il fatto che Z [i] è UFD e 1 + i è primo, abbiamo
che d è unità oppure d = 1 + i oppure d = (1 + i)2. Se per assurdo d non è unità, allora
1 + i divide d e quindi 1 + i divide x3. Segue che 2 divide x6 e quindi x è pari allora
y2 + 1 = 0 (mod 4) che è assurdo. Quindi d è unità. Allora esistono m,n interi tali che
y+ i = (m+ in)3. Uguagliando parte reale e immaginaria ricaviamo che y = m(m2−3n2)
e 1 = n(3m2 − n2). Quindi se n = 1 si trova 3m2 = 2 che è assurdo, quindi n = −1 che
porta a m = 0 e quindi la soluzione (1, 0).

Usando l’anello Z [i], Lebesgue ha dimostrato che per ogni naturale > 1 l’equazione
y2 = xd − 1 non ha soluzioni con x, y non nulli.

Esercizio 2.3.1. Per i temerari consiglio i seguenti esercizi, un po’ più complicati
dei precedenti.

1. Risolvere l’equazione diofantea x2 + 4 = y3.

2. Risolvere l’equazione diofantea x2 + 9 = y5.

3. Siano a, b, c, d naturali positivi tali che a2+b2 = cd: Provare che esistono x, y, z, w, t
interi tali che:

a = t(xz − yw), b = t(xw + yz), c = t(x2 + y2), d = t(z2 + w2).

4. Provare che se a e b sono naturali positivi tali che ab = c2 + 1 per qualche intero c
non nullo, allora a e b sono somma di due quadrati.

5. Provare che se p è un primo di Z della forma 4k+1, allora è somma di due quadrati.

6. Risolvere l’equazione diofantea dovuta a Euler: 4xy − x− y = z2.

7. Trovare tutti i triangoli rettangoli diofantei di R4, cioè tutte le quaterne (A,B,C,D)
di interi tali che A2 +B2 + C2 = D2.

Pagina 9 of 12



Capitolo 2. Applicazioni alle equazioni diofantee. 10

Pagina 10 of 12



Capitolo 3

Somma di quadrati.

Teorema 6. Sia p ∈ Z un primo tale che p = a2 + b2 con a, b ∈ Z. Se p = c2 + d2 con
c, d ∈ Z allora:

a = c ∧ b = d ∨ a = −c ∧ b = −d ∨ a = d ∧ b = c ∨ a = −d ∧ b = −c ∨ a = −c ∧ b =
d ∨ a = −c ∧ b = d ∨ a = −d ∧ b = c ∨ a = d ∧ b = −c.

Dimostrazione. Abbiamo che, essendo p primo, a + ib, a − ib, c + id, e c − id hanno
norma p e quindi sono primi. Poiché poi (a + ib)(a − ib) = (c + id)(c − id), per il fatto
che Z [i] è un dominio a fattorizzazione unica, abbiamo che a + ib = u(c + id) oppure
a+ ib = u(c− id) per qualche unità u. Considerando tutti i possibili casi (u = 1, −1, i,
−i) si perviene alla conclusione del teorema.

Possiamo riassumere il teorema precedente dicendo che, se un primo di Z si scrive
come somma di due quadrati p = a2 + b2, allora c’è un unico modo per fare ciò (a meno,
come dice il teorema, di cambiare segno ad a e b). Tale proprietà non è pero vera per
interi generici. Ad esempio 50 si scrive come 25 + 25 = 52 + 52, ma anche come 12 + 72.
Come applicazione del teorema vediamo il seguente esempio.

Esempio 1. Consideriamo il quinto numero di Fermat: F5 = 22
5
+ 1 = 4294967297.

Fermat pensava che F5 fosse primo, tuttavia Euler ha trovato che si può scrivere come
somma di due quadrati in due modi diversi: 22

5
+1 = (216)2+12 = 622642+204492. Con-

segue che F5 non è primo (abbiamo dimostrato che non è primo senza necessariamente
trovare un suo divisore non banale!). Sempre Euler trovò che un divisore non banale di
F5 era 641.

Il nostro prossimo obbiettivo è quello di determinare tutti i primi di Z che sono primi
in Z [i]. In parte ci dà la risposta il seguente teorema.

Teorema 7. Sia p ∈ Z+ un primo. Allora p è primo in Z [i] se e solo se p non è somma
di due quadrati.

Dimostrazione. Se p è primo in Z [i] e per assurdo p = a2 + b2 allora p(a − ib)(a + ib)
e quindi p non è primo in Z [i], assurdo. Se invece p non è somma di due quadrati
supponiamo che p = αγ con α, γ ∈ Z [i] non unità. Allora p2 = N(α)N(γ), da cui segue
che N(α) = p e quindi se α = a+ ib troviamo p = a2 + b2 che è assurdo.

La condizione non essere somma di due quadrati non è di facile verifica. Per questo
ci viene in soccorso il seguente importante teorema (che ci dice quando un primo di Z è
somma di due quadrati.)
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Teorema 8. Sia p ∈ Z+ un primo. Allora p è somma di due quadrati ⇐⇒ p = 1
(mod 4) oppure p = 2.

Dimostrazione. Se p = a2 + b2 e p ̸= 2, proviamo che p = 1 (mod 4). Se per assurdo
così non fosse, essendo p dispari, si avrebbe p = 3 (mod 4) quindi a2 + b2 = 3 (mod 4).
Seguirebbe che, senza perdere generalità, a2 = 1 (mod 4) e b2 = 2 (mod 4), che è assurdo
perché i quadrati mod 4 sono 0 e 1. Viceversa, supponiamo che p = 2 o p = 1 (mod 4) e
proviamo che è somma di due quadrati. Ovviamente 2 soddisfa tale proprietà in quanto
2 = 12 + 12. Supponiamo ora che p = 1 (mod 4), diciamo p − 1 = 4k con k naturale
non nullo. Consideriamo il polinomio Xp−1 − 1 = (X(p−1)/2 − 1)(X(p−1)/2 + 1) ∈ Zp [X].
Per il piccolo teorema di Fermat il polinomio Xp−1 − 1 ha p − 1 radici in Zp, mentre il
polinomio X(p−1)/2−1 ha al più (p−1)/2 radici in Zp. Segue che il polinomio X(p−1)/2+1
ha almeno una radice in Zp. Quindi esiste c ∈ Z tale che c(p−1)/2 = −1 (mod p) e quindi
esiste un intero m tale che m2 = −1 (mod p). Segue che p | m2+1, cioè m2+1 = pn con
n intero e quindi (m− i)(m+ i) = pn. Supponiamo per assurdo che p non sia somma di
due quadrati. Allora per il teorema precedente p è primo in Z [i]. Allora p | m+ i oppure
p | m − i, da cui segue che esiste qualche intero di Gauss g tale che m + i = gp oppure
m− i = gp. Ma questo è assurdo in entrambi i casi, perché porterebbe a p = 1. Quindi
p è somma di due quadrati.

Segue che:

Teorema 9. Sia p ∈ Z+ un primo. Allora p è primo in Z [i] ⇐⇒ p = 3 (mod 4).

Esercizio 3.0.1.

Provare che un intero n > 1 è somma di due quadrati ⇐⇒ ∀p, p primo tale che p | n e
p = 3 (mod 4), allora p compare nella fattorizzazione di n un numero pari di volte.
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