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Introduzione

Sia G un gruppo finito. In generale ¢ interessante sapere,preso un sottogruppo normale N
di G non banale, se si possa ricostruire il gruppo G a partire da N e da G/N.Chiaramente
qua il termine "ricostruire" ¢ molto vago, ma ci riferiamo principalmente al fatto se G
possa scriversi come prodotto semidiretto di N e G/N. (per informazioni sul prodotto
semidiretto potete consultare [3]). Chiaramente la risposta é negativa. Ad esempio se p
¢ un primo e prendiamo Z,> abbiamo che I'unico sottogruppo normale non banale ¢ Z,
e il quoziente ancora Z, ma ovviamente Z,: non ¢ semidiretto di Z, con Z,.In merito a
questo problema abbiamo il seguente teorema (la cui dimostrazione si puo trovare in [3]):

Teorema 0.0.1. (Schur-Zassenhaus Lemma, 1937) Sia G un gruppo finito e N Q G :
(IN/,|G/N|)=1. Allora G ~ N %, G/N per qualche omomorfismo ¢ : G/N — N.

quindi, in particolare, se G ¢ un gruppo finito e scriviamo |G|=ab con (a,b)=1 allora
se troviamo N < G : |[N|=a si avra che G ~ N x, G/N per qualche omomorfismo ¢ :
G/N — N. Da qui la domanda di carattere pitt generale: Dato un gruppo finito G se
scriviamo |G|=ab con (a,b)=1 riusciamo sempre a trovare H < G : |H|=a ? La risposta
sfortunatamente & negativa come vederemo piu avanti. Tuttavia ci sono diversi casi in
cui la risposta ¢ affermativa:

e Se a=p™ con p primo e (p,b)=1 allora la risposta é affermativa per il primo teorema
di Sylow.

e Se G é un gruppo cosi detto "risolubile", allora indipendentemente da come siano a e
b (purche (a,b)=1), la risposta & affermativa. Nel corso delle dispense dimostreremo
questo fatto che va sotto il nome di "Primo teorema di Hall". Esplicitamente:

Teorema 0.0.2. (P.Hall) Sia G un gruppo finito e risolubile e scriviamo [G/=ab con
(a,b)=1. Allora esiste H < G : [H/=a. Inoltre se K < G : |[K|=a allora H e K sono
coniugati in G (cioé esiste g € G : K=gHg™1)

Attenzione pero che il teorema appena citato non garantisce che il sottogruppo che
troviamo sia anche normale in G. In effetti puo capitare che tutti i sottogruppi di ordine
a non siano normali. Si pensi ad esempio a S3. Abbiamo che | S3 | = 6 = 2 - 3 ma
tutti i sottogruppi di ordine 2 devono essere ciclici di ordine 2 quindi generati da elementi
di ordine 2 e cioé <(12)>,<(13)> e <(23)> che non sono normali in G. L’obbiettivo
di queste note ¢ suscitare il piu possibile I'interesse per i gruppi risolubili e arrivare
a dimostrare il primo teorema di Hall.La dimostrazione del primo teorema di Hall e
gli argomenti che tratteremo in generale usano spesso i teoremi di Sylow. Percio per
completezza ricordiamoli :

Teorema 0.0.3. (Primo teorema di Sylow) Sia G un gruppo finito e scriviamo |G|=p™b
con p primo : (p,b)=1. Allora esiste H < G : [H|=p™.
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Teorema 0.0.4. (Secondo teorema di Sylow) Sia G un gruppo finito e scriviamo |G|=p™b
con p primo : (p,b)=1. Se H,K sono sottogruppi di G di ordine p™ allora sono coniuigati.

Teorema 0.0.5. (Terzo teorema di Sylow) Sia G un gruppo finito e scriviamo |G[=p™b
con p primo : (p,b)=1. Denotiamo con Sylp(G) Uinsieme dei sottogruppi di G di ordine
p™ (anche detti p-sylow di G). Allora [Sylp(G)|=1 (mod p) e [Sylp(G)] | b.

Le dimostrazioni di questi tre teoremi si possono trovare in [2]. Tuttavia per comple-
tezza mettiamo un appendice a fine dispense in cui dimostriamo tali teoremi.
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Capitolo 1

Gruppi risolubili

1.1 Definizione di gruppo risolubile

Definizione 1.1.1. Sia G un gruppo. Una serie normale di G é una sequenza di
sottogruppi di G uno normale nell’altro:

{e} =No <M <...dN, 14N, =G

N; .
I fattori della serie normale sono i gruppi quoziente erl Vi=0,...,r1.

Nota 1.1.1. Stiamo chiedendo che ¥ i=0,...,r-1 N; sia normale in N;11 non che N; sia
normale in G. Puo capitare che se G & un gruppo ¢ H,H' sono sottogruppi di G allora
H < H ma H non ¢é normale in G. Ad esempio consideriamo il gruppo Sy e i suoi
due sottogruppi H = < (12)(34) >, V=1{e, (12)(34), (13)(24), (14)(23)} (sottogruppo di
Klein). Allora H é normale in V poiché l'indice di H in 'V ¢ 2 tuttavia H non é normale

in G (ad esempio perché (123)(12)(34)(152) ¢ H )
Esempio 1.1.1. Una serie normale per il gruppo Zs, con n>1 é data da:
{e} « <[2],> 2 Zy,

Esempio 1.1.2. Una serie normale per il gruppo D,, = < r,5> dover™ =1, s*>=1 ,srs~ 1 =r~!

n > 3 é data da:
{e} « <r> <D,
Definizione 1.1.2. Un gruppo G ¢ detto risolubile se ammette una serie normale :

{e} =No <M <...<dN,1 4N, =G

tale che ¥ 1=0, ..., r-1 N]i;rl ¢ abeliano. Una tale serie € detta serie abeliana.
Nota 1.1.2. L% importanza dei gruppi risolubili nasce nel contesto delle equazioni algebri-
che. Galois ([1f) nel 1831 ha dimostrato che preso un campo K di caratteristica 0 e un
polinomio f € K [X] allora le radici di f sono esprimibili per radicali su K se e solo se il
gruppo di Galois di f su K & un gruppo risolubile. Quindi preso ad esempio un polinomio
f€ Q[X] se vogliamo capire se le sue radici sono esprimibili per radicali su Q possiamo
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Capitolo 1. Gruppi risolubili 6

calcolare il gruppo di Galois di f su Q e capire se questo é risolubile. Un altro risultato
che mostra l'importanza dello studio dei gruppi risolubili & il teorema di Feit—Thompson
del 1963 che afferma che ogni gruppo finito di ordine dispari e risolubile. Una cosa cu-
riosa di questo teorema € che il suo enunciato é facilmente comprensibile sebbene la sua
dimostrazione di 255 pagine occupt un volume intero del Pacific Journal of Mathematics.

Esempio 1.1.3. Sia A un gruppo abeliano. Allora A é risolubile poiché la serie normale:
fe}24
é abeliana.
Esempio 1.1.4. Sia n>3 allora D,, é risoluibile poiché la serie normale
{e} « <r><D,

e abeliana avendo come fattori Zy e Zy,

1.2 Proprieta dei gruppi risolubili

Iniziamo a vedere alcune proprieta dei gruppi risolubili.Prima di iniziare ricordiamo il
secondo teorema di isomorfismo per gruppi:

Teorema 1.2.1. Sia G un gruppo e N,T < G con N < G. Allora NN T < T e si ha che:

T NT
NNT N
Proposizione 1.2.1. Sia G un gruppo risolubile e H < G. Allora H é risolubile.

Dimostrazione. Poiché G é risolubile ammette una serie normale:
{e}:NOﬁNlﬁ-“ﬁNrflﬁNr:G

i cui fattori sono abeliani. Adesso per il secondo teorema di isomorfismo V i=0,...,r-1
N; " H < N;y; N H (abbiamo usato G=N;;1, N=N; e T=N;;; N H) quindi abbiamo la
serie normale per H:

{e} =NoNHIN NHS...IN,.,NHIN,NH=H
con fattori (V i=0,...,r-1):

Ni-i—l NH - Ni(Ni+1 QH) < Ni+1

e quindi abeliani, segue che H é risolubile. n

Proposizione 1.2.2. Sia G un gruppo risolubile f:G — H é un omomorfismo suriettivo
allora H é risolubile

Dimostrazione. Poiché G @& risolubile esiste una serie abeliana:
{fe} =NgIN; <...<dN,; <IN, =G

Ora poiché N; < N;,1 V i=0,...,r-1 si ha immediatamente che V i=0,...,r-1
f( N; ) < {(Njy1 ). Abbiamo quindi la serie normale per H:
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Capitolo 1. Gruppi risolubili 7

{e} = f(Ny) S f(N}) < ... < §(N,_;) < £(N,) = £(G)=H

Proviamo che i fattori di questa serie sono abeliani.V i=0,...,r-1 & definito ’'omomorfismo
suriettivo:

f(Nit1)
f(N;

n — f(n) f(Nit1)

Qbil Ni+1 —

con N; contenuto in Ker(¢;). Segue per il primo teorema di isomorfismo che ¢; induce
un omomorfismo suriettivo:

Ni J(Nig1)

v T, F(N;

f(Ni-H)
f(Ni

da cui discende immediatamente:

e quindi ¢ quoziente di un gruppo abeliano e quindi ¢ abeliano. O

Corollario 1.2.1. Sia G un gruppo risolubile ed N < G. Allora G/N ¢é risolubile.

Dimostrazione. E’ una conseguenza immediata della proposizione anteriore in quanto la
proiezione sul quoziente € un omomorfismo suriettivo. ]

Prima di andare avanti ricordiamo il terzo teorema di isomorfismo:
Teorema 1.2.2. Sia G un gruppo e H,K sottogruppi normali di G con K < H. Allora:

G/K G
H/K ~ H

G
Proposizione 1.2.3. Sia G un gruppo e H< G. Se H e I sono risolubili allora G ¢

risolubile.

Dimostrazione. Siccome il quoziente T é risolubile esiste una serie abeliana:

{6}—Q0§1Q1§1...§1QT_1§1QT_%

N,
Ora V i=0,....r-1 Q; = # dove N; < N, e per il terzo teorema di isomorfismo:
Nt Qi
N; Qi
tuttavia anche H é risolubile quindi ammette una serie abeliana:

{e}=Ho<H; <...<H,; JH,=H

segue che la serie:
{e}=Hy<H, Q... <H,_; 9H,=HJIN; Q... <N,_; IN, =G

¢ una serie abeliana per G. O
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Proposizione 1.2.4. Sia G un gruppo e H,K < G. Allora:
1. G/H,G/K risolubili — G/H N K ¢ risolubile.
2. H,K risolubili — HK risolubile.

Dimostrazione. 1. Definiamo 'applicazione:
f: G— G/H x G/K
g — (gH.gK)

f ¢ un omomorfismo il cui nucleo ¢ banalmente H N K da cui G/H N K ¢ un
sottogruppo di G/H x G/K che é risolubile e quindi si ha la tesi.

2. Segue dal fatto che HK/H e H sono risolubili.

1.3 Alcuni esempi di gruppi risolubili

Esempio 1.3.1. Sia p un primo ed n un naturale positivo. Allora se G & un gruppo di
ordine p" e risolubile. Per vedere questo fatto ragioniamo per induzione su n. Se n=1
G ~ Z, che ¢ risolubile essendo abeliano. Supposto vero per ogni k<n proviamo che
G ¢ risolubile.In effetti Z(G) & un sottogruppo normale di G risolubile il cui quoziente

G i
m ha ordine p* con k<n (poiché i p-gruppi hanno centro non banale [3]) seque, per

la proposizione anteriore, che G é risolubile.

Esempio 1.3.2. Se H,K sono gruppi risolubili allora G= H x K é risolubile poiché H

e normale in G e — ~ K ¢é risolubile. Similmente il prodotto semidiretto di due gruppi

risolubili & risolubile.

Esempio 1.3.3. Proviamo che S3 e Sy sono risolubili mentre per n>4 S,, non é risolu-
bile. Questo ultimo fatto unito al teorema di risolubilita di Galois e al fatto che esistono
polinomi il cui gruppo di Galois & S,, mostra che non esiste una formula risolutiva per le
equazioni algebriche di grado > 4.

1. S5 ¢ risolubile poiché <(123)> ¢é normale in Sz ed ¢ risolubile poiché abeliano (&

isomorfo a Zs )inoltre il quoziente ¢ risolubile poiché isomorfo a Zs.

3
< (123) >
2. Sy ¢ risolubile poiché il suo sottogruppo di Klein V ¢ risolubile (ha ordine 4) e il
S
quoziente 74 ha ordine 6 e quindi é risolubile.
3. VY n>4 S, non e risolubile perché se lo fosse lo sarebbe A, ma questo é semplice e
non abeliano. Una dimostrazione alternativa che non usa la semplicita di A, per
n>4 ¢ la sequente (per una dimostrazione della semplicita di A,, potete consultare

[2]): Consideriamo un generico sottogruppo normale di S,, per n>4 e sia A linsieme
dei tre-cicli di S,,. Se proviamo che A C N — A C NW abbiamo chiaramente
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Capitolo 1. Gruppi risolubili 9

concluso (poiché implicherebbe che ¥V m € N A C N™)). Prendiamo quindi un tre-
ciclo (abe) e proviamo che (abc) € NW. Siano z,y € {1,...,n} con

T # y e xy diversi da a,b e c. Un conto immediato mostra che [(abx), (acy)]=(abc)
e quindi (abc) € N,

Esempio 1.3.4. Siano p e q primi. Proviamo che ogni gruppo di ordine p*q ¢ risolu-
bile. Chiaramente possiamo assumere che p sia diverso da q poiché in tal caso G & un
p-gruppo che é risolubile per quanto gia visto. Distinguiamo quindi due casi: ¢ < p e q >
p. Se q < p allora consideriamo P un p-sylow di G cio¢ P < G con |P| = p*. Adesso dico
che P ¢ normale in G cioé il numero dei p-sylow e 1. Infatti per il secondo teorema di
Sylow abbiamo che [Sylp(G)/] divide q. Quindi se [Sylp(G)| # 1 allora [Sylp(G)|=q poiche
q & primo. Tuttavia per il terzo teorema di Sylow [Sylp(G)|=1+pk con k naturale positivo.
Quindi abbiamo che q = 1+pk > pk > p > q che ¢ assurdo. Seque che P é normale in
G. Adesso P ¢ risolubile in quanto abeliano e il quoziente G/P ¢ risolubile sempre poiché
abeliano. Dunqgue G é risolubile. Supponiamo ora che q > p. Sia Q) un g-sylow di G. Se
proviamo che @ € normale con un ragionamento simile al primo caso troviamo che G é
risolubile. Se Q non & normale in G allora [Sylq(G)/ vale p o p?. Tuttavia non puo valere
p poicheé altrimenti esisterebbe un naturale positivo k tale che 1+qgk=p da cui l’assurdo p
> p. Quindi esiste un naturale positivo k tale che [Sylq(G)|=1+qk=p* da cui q divide p+1
e cioé q=p+1. Seque che p=2 e q=3 ma allora |[G]|=12 e per il teorema di classificazione
dei gruppi di ordine 12 G & risolubile (per vedere la classificazione dei grupi di ordine 12
rimando a [3]).

Nota 1.3.1. Nel capitolo 3 vedremo che l’esempio anteriore risulta immediato con la
conoscenza del secondo teorema di Hall.

1.4 Caratterizzazione dei gruppi risolubili finiti e teo-
rema di Jordan-Holder

Quando G ¢ finito abbiamo la seguente caratterizzazione che risulta cruciale nella dimo-
strazione del teorema di risolubilita di Galois:

Proposizione 1.4.1. Sia G un gruppo finito : |G/>1. Allora sono equivalenti:
1. G é risolubile
2. G ammette una serie normale con fattori di ordine primo.

Dimostrazione. 1l fatto che se G ammette una serie abeliana con fattori di ordine primo
implica banalmente che G sia risolubile (poiché i fattori sarebbero gruppi ciclici quindi
abeliani). Viceversa se G ¢ risolubile ammette una serie abeliana:

{e}:NOﬁNlﬁ-“ﬁNrflﬁNr:G

Adesso poiché G ¢ finito e i fattori sono abeliani per ogni i=0,...,r-1 esiste una catena
di sottogruppi:

N;=Hy<H, Q... <H,; <H; = Nipy
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Hi—l—l

tale che i fattori sono semplici e abeliani e quindi ciclici di ordine primo. Segue che

i
possiamo costruire una serie abeliana per G i cui fattori hanno ordine primo.

]

Nota 1.4.1. (Il teorema di Jordan Holder) Approfittiamo di questo teorema per esibire
un altro modo per stabilire se un gruppo finito é risolubile. Sia quindi G un gruppo finito.
Viene detta serie di composizione per G una serie mormale i cui fattori sono gruppi
semplici. Ad esempio:

{e} «{(12)(34)} <« V<1 Ay < S,
¢ una serie di composizione per Sy. Oppure:
{e} @« <r?><a <r> <Dy

e una serie di composizione per Dy. Il teorema di Jordan Holder afferma che ogni gruppo
finito G ammette una serie di composizione e che se:

{e} =N <N Q...<N1 9N, =G
{e}:KOﬁKlﬁ-“ﬁKs—lﬁKs:G

sono serie di composizione per G allora r=s ed esiste o € S, tale che K;/K; 1 ~
No)/No@y—1 ¥V i=1,...,r.La dimostrazione di questo teorema sebbene non sia particolar-
mente difficile esula dall’obbiettivo di queste note. Tuttavia ci da un ulteriore modo di
stabilire se un gruppo finito ¢ risolubile. Infatti da questo teorema discende che se un
gruppo finito G ammette una serie di composizione con un fattore non ciclico allora non
¢ risolubile. Come esempio di questo corollario c¢’é il fatto che per n>/ S,, non & risolubile.
Infatti la serie:

{e} <A, <8,

¢ di composizione (qua stiamo usando il fatto che A,, & semplice per n>4) ma A, non
é ciclico. St puo anche dimostrare il fatto che Z é un dominio a fattorizzazione unica
usando il teorema di Jordan Holder e che la buona riuscita dell’extension problem (cioé
dati due gruppi H e K trovare tutti © gruppi G tali che esista una sequenza esatta 1 —>
H— G — K — 1) con il teorema di Jordan Holder permetterebbe di ricostruire tutti
i gruppi finiti. Per maggiori informazioni sul teorema di Jordan Holder e le serie norma-
li potete consultare [3] o anche il link https: //kconrad. math. uconn. edu/blurbs/
grouptheory/ subgpseries!. pdf
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1.5 Esercizi

1.

10.
11.

12.

13.

14.

Provare che esistono gruppi non isomorfi con serie di composizione con fattori
isomorfi.

Provare che ogmi gruppo abeliano semplice € finito.

Provare che un gruppo abeliano ammette una serie di composizione se e solo se ¢
finito.

Esibire un gruppo infinito che ammette una serie di composizione.
Provare che se un gruppo risolubile ha una serie di composizione allora ¢ finito.

Un gruppo G é detto super-risolubile se esiste una serie di sottogruppi
{e}=H <H <...<H._, <H~-G

tale che per ogni i=0,....,r H; < G e i fattori sono ciclici.Provare che S; non ¢
super-risolubile.

(Tosto) Provare che se un gruppo finito G ¢ tale che ogni suo sylow ¢ ciclico allora
G é risolubile

. Siano p,q primi con p < q e sia G un gruppo di ordine pg".Provare che G é risolubile.

Come vedremo la condizione che p < q & comunque superflua (I’ho messa solo per
semplificare 1'esercizio)

Sia K un campo. Definiamo il gruppo affine su K come:

AF(K) = {(8 Z{) :a,beK,a%O}

con l'operazione di prodotto matriciale usuale. Provare che Aff(K) ¢ un gruppo
risolubile.

Provare che un gruppo di ordine 769 ¢ risolubile.
Provare che per n>2 A,, non é risolubile.

Sia K un campo ed Heis(K) il gruppo di Heisemberg. Provare che Heis(K) ¢
risolubile.

Provare che il gruppo dei quaternioni generalizzato Qon» con n>2 ¢ risolubile.

Provare che GL2(F4) non é risolubile.
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Capitolo 2

Sottogruppi caratteristici e il problema
di Burnside

2.1 Sottogruppi caratteristici e normali minimali

La seguente sezione ci serve per dimostrare alcuni risultati preliminari che permetteranno
di dimostrare in maniera piu elegante i teoremi di Hall.In particolare data la seguente:

Definizione 2.1.1. Sia G un gruppo. H < G é detto un sottogruppo normale minimale
per G se :

1. H# {e}
2. H4 G
3. Non esiste K I G con {e} < K < H.

vogliamo provare che se G € un gruppo finito e risolubile allora i sottogruppi normali
minimali sono elementarmente abeliani ( cioé p-gruppi abeliani in cui ogni elemento ha
ordine p). Per arrivare a cio ci serve partire con la nozione di sottogruppo caratteristico:

Definizione 2.1.2. Sia G un gruppo e H < G. H ¢é detto caratteristico in G ( e scriviamo
H char G ) seV ¢ € Aut(G) si ha che ¢(H)=H.

Esempio 2.1.1. Consideriamo il gruppo Ziy. Proviamo che il sottogruppo <[2],,> ¢
caratteristico in Zyg. Sia ¢ € Aut(Zyg) proviamo che ¢(<[2],,> ) = <[2],,> . Poiche ¢ é
un omomorfismo abbiamo ¢(<[2],,> ) = <¢(12],,) >. Adesso la cardinalita di <¢([2],)
> ¢ lordine di ¢([2],,) in Zio. Siccome ¢ ¢ un isomorfismo lordine di ¢(2],,) in Zio
coincide con Uordine di [2],, in Zyg cioé 5. Seque , essendo Zyg ciclico, che ¢(<[2],,> )
= <[2];, >.

vediamo alcune proprieta che risultano spesso utili:

Proposizione 2.1.1. Sia G un gruppo. Allora valgono le sequenti:

1. Se¥ ¢ € Aut(G) si ha che ¢(H)<H allora H char G.
2. Se H char G allora H < G.
3. Se H char K e K char G allora H char G.
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4. Se H char K e K4 G allora H1 G

5. Z(G) char G

Dimostrazione. 1. Sia ¢ € Aut(G). Allora ¢(H)<H e ¢~ (H)<H. Segue che
H=¢(¢~'(H)) < ¢(H).

2. Sia g € He h € H. Proviamo che ghg™! € H. Di fatto se ¢, G — G, a+— gag™*
allora ¢, € Aut(G) e quindi ¢,(H)=H da cui la tesi.

3. Sia ¢ € Aut(G). Allora ¢|x € Aut(K) e quindi ¢(H)=¢|x(H)=H

4. siahe€Hege G. Sia ¢;: G — G, a+—— gag ! allora essendo K < G si ha che
bglr € Aut(K) quindi ghg™ = ¢,(h)=¢,|x(h) € ¢,|x(H) < H.

5. Sia ¢ € Aut(G) g € Z(G). Proviamo che ¢(g) € Z(G). Se h € G abbiamo che

¢(g)h=¢(go~" (h))=d(¢~" (h)g) = ho(g).
O

Come visto nella seguente proposizione se un sottogruppo € caratteristico allora é
normale. In generale non vale pero il viceversa come ci mostra il seguente:

Esempio 2.1.2. Consideriamo il gruppo Zs x Zo = < (1,0),(0,1)> e il sottogruppo H
generato da (1,0). Se ¢ & l'automorfismo che scambia (1,0) con (0,1) chiaramente H non
¢ mandato in se stesso bensi nel sottogruppo generato da (0,1).

Il secondo ingrediente ¢ la nozione di risolubilita in termine di sottogruppo di com-
mutatori.

Definizione 2.1.3. Sia G un gruppo.Si pone:
1. GO =@
2. GW= < {[g,h] : g,h € G} > (detto sottogruppo dei commutatori di G)
3.V ke N GHD = (GW)W
Sono spesso utili le seguenti:
Proposizione 2.1.2. Sia G un gruppo. Allora valgono le sequenti:
1. GY char G
2. G/GW ¢ abeliano
3. Se N< G e G/N ¢ abeliano allora GM < N.

Dimostrazione. 1. Siano g,h € G. Allora V ¢ € Aut(G) si ha che ¢([g,h])=[o(g),o(h)]
c GW,

2. Siano g,h € G. Allora gGMWhGWg 'GMRIGM = [gh|GD ) e quindi la tesi.

3. Siano g,h € G proviamo che [g,h] € N. Di fatto [g,h]N=N quindi la tesi.
]
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Giusto per completezza enunciamo un famoso teorema dovuto a Shur (che comunque
non sard utile ai nostri scopi) la cui dimostrazione non & per nulla immediata:

Teorema 2.1.1. Sia G un gruppo : [G : Z(G)] ¢ finito. Allora GV ¢ finito.
Dimostrazione. Guardare in [3] O

Siamo ora pronti per la sequente proposizione che ci permettera di caratterizzare i
sottogruppi normalt minimali dei gruppi risolubili finiti.

Proposizione 2.1.3. Sia G un gruppo. Allora G ¢ risolubile se e solo se esiste n € N :

G = {e}.
Dimostrazione. Se G ¢ risolubile allora esiste una serie abeliana:
{6}:N0§]N1S}-"§]Nr71ﬁNr:G

Adesso N,_; < G e G/ N,_; & abeliano quindi G < N,_;. Similmente N,_, < N,_;
e N,_1/N,_5 & abeliano quindi GO < Nr(l_)1 < N,_s. Iterando il ragionamento troviamo
che G = {e}. Viceversa se esiste n € N : G = {e} allora la serie normale:

{fe}=GM agr-H g ... aGWaGO =G

é abeliana e quindi G é risolubile.

Stamo pronti per il sequente:

Teorema 2.1.2. Sia G un gruppo risolubile e finito e H un sottogruppo normale mini-
male. Allora H é elementarmente abeliano.

Dimostrazione. Iniziamo a vedere che H ¢ abeliano. Siccome H") char H e H & normale
in G si ha che H® ¢ normale in G. Siccome H ¢ il sottogruppo normale minimale ed &
risolubile per la proposizione anteriore I'unica possibilita ¢ che H® = {e} e quindi H &
abeliano.Sia ora p un primo che divide l'ordine di H e sia P un p-sylow di H. Siccome
H é abeliano per il secondo teorema di Sylow P é caratteristico in H quindi P=H segue
che H ¢ un p gruppo. Inoltre {x € H : 2? = 1} char H quindi H={z € H : 2? = 1} e cio¢
ogni elemento di H ha ordine p da cui la tesi. O]

Conseguenza immediata del seguente teorema é il:
Corollario

Corollario 2.1.1. Sia G un gruppo risolubile e finito e H il sottogruppo normale mini-
male. Allora:
H~7

X ... %X 7

p p

per qualche primo p.

Dimostrazione. Poiché H é il sottogruppo normale minimale H é elementarmente abelia-
no. Quindi esiste un primo p tale che H é un p-gruppo abeliano in cui ogni elemento di
H diverso dall’elemento neutro ha ordine p. Allora per il teorema di classificazione dei
gruppi abeliani finiti I'unica possibilita ¢ che H >~ Z,, x ... x Z, e quindi la tesi. O
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2.2 Il problema di Burnside

Un buon momento per fare una piccola digressione potrebbe essere questo. Partiamo con
la seguente definizione:

Definizione 2.2.1. Un gruppo G e detto di torsione se ogni suo elemento ha ordine
finito.

Chiaramente ogni gruppo finito ¢ di torsione. Il viceversa pero non ¢ vero cioé esistono
gruppi di torsione che sono infiniti. Uno tra questi ¢ il gruppo di Priifer
Z(p*>®) = < x1,x9,...|27 = 1,25 = x1,... > con p primo.Tuttavia quest’ultimo gruppo
non ¢ finitamente generato.Per questo motivo Burnside propose alla comunita matematica
il seguente problema: se tutti gli elementi di un gruppo finitamente generato hanno
ordine finito, allora il gruppo ¢ un gruppo finito? In generale la risposta € negativa,
cioé esistono gruppi finitamente generati, di torsione che perd sono infiniti (Teorema di
Golod—gafarevié). Se chiediamo pero che il gruppo G soddisfi qualche proprieta in piu
allora la risposta é affermativa. Vediamo che la proprieta di essere risolubile e una di
quelle.

Lemma 1. Sia G un gruppo abeliano,finitamente generato e di torsione. Allora G é
finito.

Dimostrazione. Siccome G ¢ finitamente generato esiste un sottoinsieme S = {s1,..., s, }
di G tale che G = < S >. Inoltre siccome G ¢ di torsione esiste un naturale k tale che per
ogni i=1,...,n si ha che s*=1. Allora siccome ogni elemento di G ha la forma s&...s*» con

0 <k; <ksiha|G|] <o(s1) ...0(s,) (dove o(x) indica 'ordine di un elemento x). [

Il secondo ingrediente per mostrare che se G ¢é risolubile allora la domanda posta da
Burnside ¢ affermativa ¢ il seguente lemma:

Lemma 2. Sia G un gruppo finitamente generato e H < G : [G:H] ¢ finito. Allora H ¢é
finitamente generato.

Dimostrazione. Supponiamo che G=< g1, ..., g, >. Senza perdere generalita possiamo
assumere che l'inverso di ogni generatore sia un generatore. Siano ora Htq,...,Ht,, i
laterali di H tali che G = Ht; U ... Ht,,, ti=1 eV i# j Ht; N Ht; = (). Adesso per ogni
i,j esiste h(i,j) € H : t;h;=h(i, j)teu ) per qualche k(i,j). Non ¢ difficile a questo punto
vedere che H ¢ generato dagli elementi h(i,j). ]

Teorema 2.2.1. Sia G un gruppo risolubile,finitamente generato e di torsione. Allora G
e finito.

Dimostrazione. Siccome G ¢ risolubile esiste un naturale n tale che G™ ={e}. Facciamo
dunque induzione su n. Se n=1 allora G ¢ abeliano quindi dal lemma G é finito. Suppo-
niamo quindi vero per n-1. Il gruppo quoziente G/ G() ¢ abeliano, finitamente generato
e di torsione quindi ¢ finito. Quindi per il lemma anteriore G(!) ¢ finitamente generato.
Ma allora G™) ¢ risolubile,finitamente generato e di torsione con (GM)™~Y = e} quindi
per ipotesi induttiva ¢ finito. Ma allora G/ GV ¢ finito con G™) finito segue che G ¢
finito. [
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2.3 Esercizi

1. Sia G un gruppo e H < G : (|G:H] : [H| )=1. Provare che H char G.

2. Sia G un gruppo e H < G. Diciamo che H é completamente invariante se per ogni
f € Hom(G,G) si ha f(H) < H. Provare che G*) & completamente invariante.

3. Provare che Z(G) potrebbe non essere completamente invariante.

4. Consideriamo Z con 'operazione binaria -(m,n)=m-+n se m & pari e -(m,n)=m-n se
m ¢ dispari. Provare che (Z, - ) & un gruppo ed é risolubile.

5. Sia G un gruppo. Viene detto esponente di G il piu piccolo naturale positivo n tale
che V g € G g"=e.Provare che un gruppo finitamente generato con esponente 2 &
finito (si pud mostrare che il gruppo ¢é finito anche se I’esponenente & 3 o 4).
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Capitolo 3

I teoremi di Hall

3.1 Il primo teorema di Hall

Sia G un gruppo finito e scriviamo |G|=ab dove (a,b)=1. Come sappiamo dai teoremi di
Sylow se a=p™ con p primo allora G ammette un sottogruppo di ordine a e tutti tali sot-
togruppi sono coniugati. Ma se facciamo la richiesta che a abbia pit di un divisore primo
non é detto che G ammette tale sottogruppo.Per esibire un esempio esplicito partiamo
dimostrando il seguente lemma che generalizza il teorema di rappresentazione di Cayley:

Lemma 3. Sia G un gruppo e H< G : [G:H[=n. Allora esiste p: G — S,, omomorfismo
tale che Kergp < H.

Dimostrazione. Sia X = {¢gX : g € G}. Definiamo 'applicazione:
¢ G — SX ~ Sn
ar— ¢q

dove per ogni a € G ¢,(gX)=agX. Vediamo che ¢ ¢ ben definita cioé che per ogni a €
G ¢, ¢ una funzione bigettiva. Se gH=g H allora agH=agg '¢g’H=ag’H quindi ¢, ¢ ben
definita. Inoltre ¢, ¢ iniettiva poiche se agH=agH allora gH=g'H. Il fatto che poi ¢ ¢
un omomorfismo ¢ immediato. Vediamo invece che il nucleo é contenuto in H. se a ¢ un
elemento del nucleo di ¢ allora agH=gH per ogni g in G quindi aH=H da cui a € H. [

Corollario 3.1.1. Sia G un gruppo semplice e H<G ; [G:H[=n. Allora G si immerge in
S

Dimostrazione. Per il lemma anteriore esiste ¢: G — S,, omomorfismo tale che Ker¢ <
H < G. Poiché G ¢ semplice e ker¢) < G I'unica possibilita ¢ che Ker¢ sia banale e cioé ¢
¢ iniettiva. O

Siamo allora pronti per esibire il controesempio esplicito alla domanda che ci eravamo

posti.

Esempio 3.1.1. Consideriamo il gruppo semplice As. Abbiamo che [As | = 4-15. Pro-
viamo che non esiste un sottogruppo di A5 di ordine 15. Di fatto se esiste un tale sotto-

gruppo per il corollario anteriore Ag si immergerebbe in S, ma questo € assurdo poiché
60 non divide 24.
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La cosa che manca ¢ la risolubilita del gruppo di partenza come vedremo nella di-
mostrazione del primo teorema di Hall. Prima di vedere la dimostrazione del teorema
partiamo con un lemma preliminare.Per farlo ricordiamo che dato un gruppo Ge H < G
¢ detto normalizzante di H in G il piu grande sottogruppo di G in cui H é normale ed é
denotato con Ng(H). Non ¢ difficile vedere (farlo come esercizio) che g € Ng(H) <~
gHg~!=H.Siamo allora pronti per il seguente:

Lemma 4. (L’argomento di Frattini) Sia G un gruppo finito e K < G. Sia P un p-sylow
di K. Allora G=KN¢(P).

Dimostrazione. Sia g € G. Allora gPg~! < gKg~! = K. Segue che gPg~! & un p-sylow di

K e quindi per il secondo teorema di Sylow esiste k € K tale che gPg~!=kPk~! da cui
P=¢g 'kP(g7'k)™! e quindi g~'k € Ng(P) segue che g € KNg(P).
[

Siamo dunque pronti per il seguente:

Teorema 3.1.1. (P.Hall 1928) Sia G un gruppo finito risolubile con |G|=ab con (a,b)=1.
Allora esiste H< G : |H|=a. Inoltre se K < G : |[K|=a esiste g € G : K=gHg™'.

Dimostrazione. Dimostriamo il teorema per induzione su n=|GJ|. Se n=1 il teorema ¢é
ovvio. Supponiamo quindi vero per ogni k < n e dimostriamolo per n. Se b=1 il teorema
é ovvio quindi possiamo assumere che b>1.

e Iniziamo supponendo che esista H < G non banale : |H| = a'b' con d’|a e b'|b con

b <b.

1. ESISTENZA
Abbiamo che |G/H| = (a/a’)(b/b') < ab quindi per ipotesi induttiva esiste A
<G:A/H<G/Hel|A/H| = a/d Allora |A| = all < ab ma A ¢ risolubile
quindi esiste A" < A < G : |A'|=a ( e questo prova ’esistenza).

2. CONIUGAZIONE

Proviamo ora che se N,K sono sottogruppi di G di ordine a allora sono co-
niugati.Come prima cosa osserviamo che |[NH|=|KH|=ab'.Infatti abbiamo che
essendo H < G allora NH < G quindi [NH|=cd con c|a e d|b.Tuttavia N < NH
quindi a | ¢cd ma (a,d)=1 quindi a | ¢ cioé¢ a=c. Similmente H < NH quindi a'b’ |
cd quindi ¥’ | d. Macd | ad’b’ quindi d | O cioé d=0b". Segue che [NH|=|KH|=ab'.
Proviamo adesso che NH/H e KH/H sono coniugati in G/H. Di fatto NH/H e
KH/H sono sottogruppi di G/H di ordine a/a’ e quindi per ipotesi induttiva
sono coniugati in G/H. Cio¢ esiste g € G : (gG)(NH/H)(¢~'G)=KH/H da cui
N e K sono coniugati in G.

Dunque abbiamo provato il teorema nel caso in cui esista H < G non banale : |H|=a'b' con
a'la e b'|b con b’ <b. Dunque possiamo assumere d’ora in avanti che V N < G si abbia b |
IN|. Ma allora detto H il sottogruppo normale minimale sappiamo che H ¢ un p-gruppo
abeliano tale che ogni elemento ha ordine p segue che b=p™ e quindi siamo nel seguente
caso:

e |G|=ap™ con (a,p)=1 e H é I'unico p-sylow di G ed ¢ abeliano e normale minimale.

Pagina 20 of



Capitolo 3. I teoremi di Hall 21

1. ESISTENZA
Adesso essendo G risolubile si ha che G/H ¢ risolubile di ordine a. Sia K/H
il sottogruppo normale minimale di G/H. Allora |K/H|=¢" con q primo di-
verso da p. Allora |K|=¢"p™. Sia Q un g-sylow di K (esiste per il primo
teorema di Sylow) allora K=HQ. Definiamo ora N*=Ng((Q). Proviamo che
IN*|=a.Poiché¢ K < G e Q & un g-sylow di K per 'argomento di Frattini si ha
che G=KN*.Definiamo ora N=N* N K = Ng(Q). Mostreremo che |N*|=alH
N NJ| e poi che H N N ¢ banale.Per il secondo teorema di isomorfismo abbiamo

che:
G/K ~ KN*/K ~ N*/N* 0 K = N*/N
da cui, tenendo anche conto che K=HN (poiché¢ K=HQ e Q < N < K) abbiamo:
IN*[=[G/KJIN|=(|GI/[K]) IN| = (|G[[N])/ (JHN]) = a [H N N]|

Proviamo adesso che H N N & banale.Mostreremo prima che H N N < Z(K) e
poi che Z(K) ¢ banale.Sia x € H N N e k € K=HQ. Allora k=hs con h € H
e s € Q.Proviamo che xk=kx. Sara sufficiente vedere che xsz~'s~'=e ovvero
che xsz7's7! € H N Q.Effettivamente poiché x € N allora Q=xQz~! quindi
xsz~! € Q da cui xsz7's™! € Q. Inoltre H < G quindi sz~ 's™! € H da cui
xsz~'s™! € H. Proviamo adesso che Z(K) ¢ banale.Supponiamo che Z(K) sia
non banale. Allora essendo Z(K) < G (poiché Z(K) char K e K ¢ normale in
G) si deve avere che H < Z(K).Ma K=HQ quindi Q char K (stiamo usando il
secondo teorema di Sylow) e quindi Q < G segue che H < Q che ¢ assurdo.

2. CONIUGAZIONE
Infine sia A < G : |A|=a. Proviamo che A e N* sono coniugati.Iniziamo

a vedere che A N K e Q sono coniugati.Bastera provare che |A N K|=¢".
Abbiamo che:

a | |AK]| e p™¢" |AK| — |AK|=ab=|G| - AK=G
da cui:
G/K=AK/K~A/ANK—= |[ANnK|=4¢"

Segue che N* e Ng(A N K) sono coniugati (scrivere i dettagli per eserci-
zio). Tuttavia |[Ng(A N K)|=|N*|=a ¢ A N K < A quindi per le proprieta
del normalizzante A < Ng(AN K) da cui A=Ng(ANK).

O

3.2 1l secondo teorema di Hall

Sia G un gruppo finito e p un primo che divide l'ordine di G. Allora sara |G|=ap™ con
(a,p)=1. Un sottogruppo di G di ordine a ¢ detto p-complemento di G.Il primo teorema
di Hall ci dice che se G ¢ risolubile per ogni primo p che divide l'ordine di G si ha
che G ammette un complemento. Ebbene il secondo teorema di Hall ci dice che vale
anche il viceversa. Prima di vedere la dimostrazione del teorema vediamo alcuni lemmi
preliminari:
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Lemma 5. Sia G un gruppo finito e H K < G. Allora [G:H N K|=[G:H|[H:H N K]
Dimostrazione. Per il teorema di Lagrange abbiamo che:

[GH N K] = |G| / [HN K[ = (|G][H])/(H[[H N K)=[G:H|[H:H N K]

da cui immediatamente la seguente:
Lemma 6. Sia G un gruppo finito e H K < G : (|G:H],|G:K])=1. Allora G=HK.

Dimostrazione. Poiché |G:H]| e [G:K] sono coprimi e dividono [G:H N K] si deve avere
che [G:H]|G:K] < |G: H N K] quindi |G| < |HK]| e quindi la tesi. O

Un altro importante risultato prima di vedere il secondo teorema di Hall ¢ il seguente;

Lemma 7. Sia G un gruppo finito e HK,L < G risolubili : [G:H],|G:K],|G:L] sono
coprimi due a due. Allora G ¢ risolubile.

Dimostrazione. Se G & banale é ovvio, quindi procediamo per induzione su |G|.Osserviamo
che se H ¢ banale allora G=K per il lemma anteriore e quindi G ¢ risolubile.Possiamo
assumere quindi che H non sia banale.Sia quindi N un sottogruppo normale minimale di
H. N ¢ un p-gruppo e siccome |G:K] e [G:L| sono coprimi possiamo assumere che p non
divida |G:K] quindi K contiene un p-sylow di G e siccome N & un p gruppo N < K9 per
qualche g € G.Adesso per il lemma anteriore G=HKY. Quindi se x € G allora N* <
K9. Segue che il sottogruppo R di G generato da U { N9 : g € G} é risolubile. Ma adesso
R ¢ normale in G ed ¢ non banale perché contiene N. Inoltre HR/R,KR/R,LR/R sono
sottogruppi di G/R risolubili quindi per ipotesi induttiva G/R ¢ risolubile ma quindi G
¢ risolubile. O

Nella dimostrazione del secondo teorema di Hall useremo anche il teorema di Burnside
la cui dimostrazione usa tecniche di teoria delle rappresentazioni:

Teorema 3.2.1. (Burnside) Sia G un gruppo : |G|=p™q" con p,q primi. Allora G ¢
risolubile.

Dimostrazione. La dimostrazione passa per argomenti di teoria dei caratteri reperibile al
link: https://math.uchicago.edu/ may/REU2015/REUPapers/Zimmerman. pdf O

Teorema 3.2.2. (Hall, 1937) Sia G un gruppo finito : G ammette un p-complemento
per ogni primo p : p | |G[. Allora G ¢é risolubile.

Dimostrazione. Facciamo induzione sul numero n di divisori primi di G. Se n=1 o n=2 ¢
vero perché se n=1 G é un p-gruppo quindi risolubile come visto nel capitolo 1 mentre se
n=2 G é risolubile per il teorema di Burnside. Assumiamo quindi n>2 e supponiamo vero
per ogni k<n.Siano p,q ed r primi che dividono I'ordine di G e siano H un p-complemento
di G, K un g-complemento di G ed L un r-complemento di G. Se proviamo che H,K ed
L sono risolubili per la proposizione anteriore abbiamo finito. Mostriamo che ad esempio
H ¢ risolubile.Il numero di divisori di |[H| & n-1 quindi se mostriamo che H ammette ad
esempio un g-complemento abbiamo finito. Di fatto H N K ¢ un g-complemento di H in
quanto G=HK.Segue la tesi. O
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3.3 Esercizi

1. Sia G un gruppo semplice infinito.Provare che G non ha sottogruppi di indice finito.
2. Provare che Ag non ha sottogruppi di indice primo.

3. Sia G un gruppo finito e p il piu piccolo primo che divide I'ordine di G. Provare che
se H < G : [G:H|=p allora H < G.

4. Sia G un gruppo abeliano finito. Provare che G é prodotto di p-gruppi.

5. Siano p,q primi con p<q e G un gruppo di ordine pg®. Provare che G ~ Z, x, A
dove A & un gruppo di ordine ¢* e ¢ : A — Aut(Z,) ¢ un omomorfismo.

6. Provare che un gruppo finito per cui si puo invertire il teorema di Lagrange ¢
risolubile.

7. Provare che se p,q,r sono primi allora un gruppo di ordine pqr ¢ risolubile. Classi-
ficare quindi tali gruppi a meno di isomorfismo.
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Conclusioni

Giusto per completezza mettiamo in luce la potenza del primo teorema di Hall unito al
teorema di Shur-Zassenhaus. Consideriamo un gruppo G tale che |G|=p; ... p,, con

D1, - - -, P primi dispari e p1< ... < p,,.G é un gruppo risolubile per il teorema di Feith-
Thompson. Quindi per il primo teorema di Hall esiste un sottogruppo H di G di ordine
P2 ... pm. Tuttavia, essendo [G:H|=p; con p; il piu piccolo primo che divide I'ordine di
G, si ha che H é normale in G. Segue, per il teorema di Shur-Zassenhaus, che

G ~ H x4, Z,, con H gruppo risolubile di ordine p, ... p,. Adesso, riapplicando il
ragionameneto ad H, otteniamo che sara, G ~ (K x4, Z,,) X4, Z,, con K risolubile di
ordine ps . .. p,,. Iterando il ragionameneto vediamo che alla fine G sara un semidiretto tra
Z,.Z,,, ...7,,  Quindi, in sostanza, il primo teorema di Hall ci permette di classificare
tuttii gruppi di ordine p; ... p,, con py, ..., p, primi dispari e p;< ... < p,, grazie al fatto
che ad ogni passo il sottogruppo di Hall che troviamo ¢ normale (qui con sottogruppo di
Hall di un gruppo G intendiamo un sottogruppo H di G tale che (|H|,|G/H|)=1) . Ma
allora ci poniamo la seguente domanda: Sia G un gruppo finito e scriviamo |G|=ab con
(a,b)=1. Sotto quali condizioni esiste in G un sottogruppo normale di ordine a ? Una
risposta a questa domanda é stata fornita da Michio SUZUKI e il lettore interessato puo
trovarla in [4].
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Appendice

I teoremi di Sylow

I teoremi di Sylow sono uno degli strumenti pitt potenti per capire la struttura di un
gruppo finito G. Giusto per capire la loro potenza proviamo che ogni gruppo di ordine 15
¢ isomorfo a Zj5. Sia quindi G un gruppo tale che |G|=15=3 - 5. Per il primo teorema
di Sylow esiste H < G : |H|=5. Tale sottogruppo ¢ normale per il terzo teorema di
Sylow (scrivere i dettagli per esercizio).Inoltre esiste per il primo teorema di Sylow K
< G : |[K|=3.Tale K ¢ normale in G per il terzo teorema di Sylow (anche qua scrivere i
dettagli per esercizio). Segue che G ~ H x K ~ Zs x Z3 ~ Z;5. Oltre questo piccola
applicazione si possono dimostrare tantissime altre cose. Ad esempio con i teoremi di
Sylow si riesce a far vedere che se G ¢ un gruppo di ordine minore stretto di 60 e semplice
allora ¢ abeliano. Conseguentemente (scrivere i dettagli) ogni gruppo di ordine < di 60 ¢
risolubile !. L’appendice che segue si limita solamente ha dimostrare tali teoremi ma uno
studio accurato e approfondito (con relativi esempi ed esercizi) si puo trovare in [2] e in
[3]. Per dimostrare i teoremi di Sylow & indispensabile la definizione di azione di gruppo:

Definizione 3.3.1. Sia G un gruppo e Q2 un insieme non vuoto.Se esiste un omomorfismo
di gruppt f : G — Sq diciamo che G agisce su ) tramite f ed f & detta l'azione di G su
Q.

Quando abbiamo un azione di gruppi possiamo definire alcuni sottoinsiemi particolari:

Definizione 3.3.2. Sia G un gruppo e () un insieme non vuoto e sia f: G — Sq un
azione di G su §2. Allora ¥V x € Q) definiamo:

e O, :={f(g9)(x): g € G} lorbita di x

e G, ={g€G: f(g9)(x) =z} lo stabilizzatore di x
wnoltre defintamo @ punti fissi di 2 come :

o Qg = {z€Q: f(g)(z) = 2Vg € G}

Sia ora G un gruppo e {2 un insieme non vuoto e sia f : G — S un azione di G
su 2.0sserviamo che le orbite indotte dall’azione f possono essere viste come classi di
equivalenza.Infatti definiamo su €2 la seguente relazione binaria, ponendo V x,y € €

x~y <= JgeG:f(g)(x)=y

é immediato verificare che ~ € una relazione di equivalenza su €2.Inoltre, osserviamo che,
fissato x €

(2]~ = {f(g)(z) 1 g € G} = O,
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e quindi:
Q= Uxeﬂ@x
Osserviamo inoltre che:
|19, | =1 <= x€ Q¢

infatti se | ©, | = 1 allora ©, = {z} e quindi V g € G : f(g)(x)=x cioe x € Q¢, viceversa
se x € Qg alloraV g € G : f(g)(x)=x e quindi ©, = {z} cio¢ | ©, | = 1. Mettiamo ora
in relazione orbite e stabilizzatori:

Proposizione 3.3.1. Sia G un gruppo che agisce su insieme non vuoto ) tramite

f: G — Sq.Allora:
e G, < GVuzel
e | O, | = [GG,]V z e
Dimostrazione. Dimostriamo i due punti.Sia x € Q.

e Osserviamo che G, ¢ non vuoto in quanto 1 vi appartiene (poiche f(1)(x)=Id(x)=x).Siano
ora a e b in G,.Allora

f(ab) (x) —£(a) (£(b) (x))—£(a) (x) —x

quindi ab € G,. Inoltre essendo f(a)(x)=x si ha che x = f(a™1)(x) e quindi G, ¢ un
sottogruppo di G.

e Osserviamo che |G:G,|=| {¢9G. : g € G} | . Mostriamo quindi che {gG, : g € G} ¢
in biezione con O,.Definiamo 'applicazione:

®: {gG,: g€ G} — O,
9G, — f(g)(x)

mostriamo che ® é bigettiva.Iniziamo a vedere che ® é ben definita.Se a e b sono
due elementi di G tali che aG,=bG, allora f(a~'b)(x)=x e sfruttando il fatto che f
¢ un omomorfismo si ottiene che f(a)(x)=f(b)(x).Quindi ® ¢ ben definita.Ora ¢ &
banalmente suriettiva ed ¢ iniettiva perche se f(a)(x)=f(b)(x) allora f(a='b)(x)=x e
quindi a='b € G, da cui aG,=bG,.Segue I'asserto.

]

Abbiamo ora tutti i prerequisiti per dimostrare il primo teorema di Sylow. Iniziamo
prima con qualche nome e poi dimostriamo il teorema.

Definizione 3.3.3. Sia G un gruppo : | G | = p*m con p un primo e (p,m)=1. H< G :
| H| = p* ¢ detto p - sottogruppo di Sylow di G ( o semplicemente p-sylow di G). L’insieme
dei p-sylow di G ¢ denotato con Sylp(G)

Finalmente possiamo dimostrare il:
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Teorema 3.3.1. ( Primo teorema di Sylow) Sia G un gruppo : | G | = p*m con p un
primo e (p,m)=1. Allora 3 H< G :| H| = p*.

Dimostrazione. Consideriamo 'insieme:
Q={XCG:|X|=p"}
L’applicazione:
f: G— Sq
Xr—{gr:z€ X}

é un azione di G su 2. Denotiamo con Aq,...,/\; le orbite indotte dall’azione, allora:
| Q| =|L01 |+ 4| A
ora siccome:
|21 = ()

p non divide | © | e quindi esiste i € {1,...,t} tale che p non divide | A; | allora p* non
divide | A; |. Adesso A\; avra la forma:

Ai:@X

per qualche X € Q. Quindi siccome p® divide | G | = [G:Gx|| Gx | = | ©x | | Gx |
si ottiene che p* divide | Gx | quindi | Gx | = p®k per qualche naturale positivo k.Se
mostriamo che k=1 abbiamo finito.Sia x € X, consideriamo G xx.Abbiamo che Gxx C
X infatti se y € Gxx allora y=gx con g € Gx. Ma se g € Gx si ha f(g)(X)=X e allora
{gz:x € X} = X da cui y=gx € X.Allora:

| Gx | = | Gxx | <[ X[ =p"
consegue che k = 1. O]

Passiamo ora a dimostrare il secondo teorema di Sylow.Ci servono dei lemmi prelimi-
nari.

Lemma 8. Sia G un p-gruppo finito (cioé un gruppo di ordine la potenza di un primo)
che agisce su insieme finito e non vuoto () tramite f : G — Sq.Allora:

| Q1= | Qe |

Dimostrazione. Se | Q | = | Q¢ | allora il teorema ¢ banalmente vero. Supponiamo quindi
che | Q| > | Q¢ | e denotiamo con Ay,...,A\; le orbite di ordine maggiore di 1 indotte
dall’azione f, allora essendo:

Q=Qc U (AU ... ULy
si ha che:
| Q- Qc| =] A1 |+ 4+ | A
Sia ora i € {1,...,t}. Supponiamo che A; = 6, con x € Q allora:
| Di | =16, | = GGy

quindi | A\; | divide p™ per qualche naturale n € N* da cui | A; | = p" per qualche r; €
N* deduciamo che p divide | Q | - | Q¢ | e quindi si ha la tesi. O
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Ci serve un secondo lemma:

Lemma 9. Sia G un gruppo : | G| = p*m con p un primo e (p,m)=1. Siano S < G : |
S| =p*eP < G un p-sottogruppo di G (cioe P ha ordine p* con k<a). Allora 3z € G
P < S*

Dimostrazione. Sia Q = {Sz : x € G}. Definiamo ’applicazione:

f:P— SQ
g — f(g)
dove f(g)(Sx)=Sxg™! V Sx € Q.f ¢ un’azione di P su €. Osserviamo che | Qp | # 0. Infatti
se | Qp | = 0 siccome P & un p-gruppo finito:

Q)= | Q0] =0

quindi p divide | Q | = [G:S] e cioé esiste un naturale positivo k, tale che: [G:S|=pk
quindi:

p'm = [ G [ = pkp
e quindi
m = pk da cui (m,p) # 1.
assurdo. Quindi esiste Sx € Q tale che V g € P Sx=Sxg~!. Sia allora g € P, allora:
xg l=sx,s €S
da cui:
g e S”

allora P < §*
]

Nel seguito se G € un gruppo e H < G e prendiamo g € G denotiamo con HY I'insieme
gHg™!.Siamo quindi pronti per dimostrare il secondo teorema di Sylow:

Teorema 3.3.2. (Secondo teorema di Sylow) Sia G un gruppo : | G | = p*m con p un
primo e (p,m)=1. Siano S,P € Sylp(G). Allora 3 x € G : P = S* . Conseguentemente |
Sylp(G) | = [G:Ng(S)] e | Sylp(G) | divide m.

Dimostrazione. Poiché P € un p-sottogruppo di G esiste x in G tale che P < S*. Ma
|P|=|S|=1]5%]| quindi P = S*. Allora deduciamo che:

Sylp(G)={S* : z € G}
consegue:
| SyIp(G) | = [G:Na(5)]
Inoltre applicando 3 volte il teorema di Lagrange si ha che:
| G | = [G:Na(9)]] Ne(S)
| Na(S) | = [Na(5):S] [ S|
|G =[G [S]
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da cui deduciamo che
[G:S]=| Sylp(G) | [Na(5):S]
e quindi la tesi. O
Possiamo dimostrare anche il seguente:

Teorema 3.3.3. (Terzo teorema di Sylow) Sia G un gruppo : | G | = p*m con p un
primo e (p,m)=1. Allora:

| Sylp(G) | =p 1

Dimostrazione. Sia S € Sylp(G).Per il secondo teorema di Sylow |G:S|=| Sylp(G)| [N¢(S):S].
Definiamo

Q={z5:2€G}
allora:
| Q| = |G:S]
e dunque:
| Q| = | Sylp(G) | [Ne(5):S]
Definiamo 'applicazione:

fS—>SQ

g — f(g)
dove f(g)(xS)=gxS V xS € Q. f ¢ un’azione di S su 2 e si ha che | Qg | = [Ng(S5):S] . Per

mostrare questo fatto, essendo :
[Na(5):S] =| {28 : @ € Na(5)} |
¢ sufficiente dimostrare che:
Qg ={zS:2 € Ng(9)}

Sia xS € (g, mostriamo che x € Ng(S) e cioé che S=S57.Poiché xS € Qg si hache V g €
S xS=gx$. Sia quindi g € S allora gx—xs per qualche s € Sda cuig € % ' e quindi S <
S e quindi S = S* ' Allora sia g € S. Abbiamo g — 2~ (xgz~!)x € S* consegue che
S = S%.Viceversa consideriamo un elemento della forma xS con x € Ng(S) e sia g € S,
vogliamo mostrare che xS=gxS. Di fatto:

S=5% — xS=8x — gxS=gSx=Sx=xS
e quindi | Qg | = [Ng(S):S|.Allora:
| 2| = | Sylp(G) | | s |
tuttavia S & un p-gruppo e quindi:
| Q] =p [ Qs |
allora:
| SyIp(G) | | Qs | = | Qs |

ma p non divide g (altrimenti p divide m e questo ¢ assurdo essendo (p,m)=1).Quindi:
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| Sylp(G) | =, 1
O

Nota 3.3.1. Sia G un gruppo : | G| = p®m con p un primo , a € N, m € Nt | (p,m)=1.
Sia S € Sylp(G) allora:

S<a4G <= | Sylp(G) | =1

inoltre nel sequito porremo | Sylp(G) | = n,(G) o se non ci sara rischio di ambiguita
semplicemente | Sylp(G) | = n, .
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