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Definizione di numero primo

Definizione

Un numero naturale p ≥ 2 è detto primo se non può essere scritto come
prodotto di due numeri naturali, ognuno dei quali sia minore di p.

Vediamo qualche esempio:

Esempio

Sono numeri primi: 3, 5, 7, 11, 13, 17, . . .

Non sono primi: 6 = 2× 3, 8 = 23, 15 = 3× 5, . . .

Una domanda sorge spontanea:

Domanda

Perché i numeri primi sono importanti?
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Il Teorema Fondamentale dell’Aritmetica

Teorema (Teorema Fondamentale dell’Aritmetica)

Sia n ≥ 2 un numero naturale. Allora n è primo oppure è prodotto di
numeri primi.

Proof.

Supponiamo che la tesi sia falsa e sia n il più piccolo controesempio.
Allora n non è primo e non può essere scritto come prodotto di numeri
primi. Essendo n non primo, esistono a, b < n tali che n = ab. Per
minimalità di n, a e b si scrivono come prodotti di numeri primi:

a = p1 · · · pt , b = q1 · · · qℓ

dove pi e qj sono primi. Dunque:

n = a · b = p1 · · · ptq1 · · · qℓ

cioè è prodotto di primi, contraddicendo l’ipotesi.
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Allora n non è primo e non può essere scritto come prodotto di numeri
primi. Essendo n non primo, esistono a, b < n tali che n = ab. Per
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Esempi

Esempio

1 18 = 2× 9 = 2× 3× 3

2 50 = 2× 25 = 2× 5× 5

3 135 = 27× 5 = 3× 3× 3× 5

Determinare la fattorizzazione in numeri primi non è affatto banale. Anche
capire se un numero è primo è un problema complesso.

Domanda

Il numero 232 + 1 è primo?
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Quanti sono i numeri primi

Teorema

I numeri primi sono infiniti.

Proof.

Supponiamo per assurdo che i primi siano finiti: p1, . . . , pn. Consideriamo:

N = p1 · · · pn + 1

Per il teorema precedente, N è primo o prodotto di primi. Ma nessuno dei
pi divide N, poiché lascia resto 1. Quindi esiste un primo non presente
nella lista iniziale. Contraddizione.
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Distribuzione dei numeri primi

I numeri primi: 2, 3, 5, 7, 11, 13, 17, 19, . . .

Non sembrano seguire uno
schema regolare. La loro distribuzione appare irregolare, quasi caotica.

Teorema (Formula di Willans)

pn = 1 +
2n∑
k=1


 n

1 +
∑k

j=1

⌊
cos2

(
π (j!+1)

j+1

)⌋
1/n


Questa formula è teoricamente interessante, ma inefficiente e non utile per
comprendere la distribuzione dei primi.
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Altre stranezze...

Esistono intervalli arbitrariamente lunghi privi di numeri primi! Definiamo
il fattoriale:

n! := n(n − 1) · · · 2 · 1

Esempi:

5! = 120

2! = 2

4! = 24
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Altre stranezze...

Osserviamo che n! + 2 è divisibile per 2, n! + 3 per 3, . . . , n! + n per n.

⇒ L’intervallo [n! + 2, n! + n] contiene solo numeri composti.

Domanda

Quanti primi ci sono della forma n! + 1?
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Il postulato di Bertrand

Teorema (Postulato di Bertrand)

Per ogni n ≥ 2, esiste un primo p tale che:

n < p < 2n

Esempio: tra 5 e 10 c’è 7, che è primo.

Teorema

Ogni intero n ≥ 7 si scrive come somma di un numero finito di primi
distinti.

Esempi:

14 = 7 + 3 + 5, 25 = 13 + 7 + 5, 21 = 19 + 2
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La congettura di Goldbach

Congettura (Forte di Goldbach)

Ogni numero pari maggiore di 2 è somma di due numeri primi.

Esempi:
4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 5 + 5 = 3 + 7

100 = 47 + 53

Congettura forte: non dimostrata, ma verificata fino a circa 4× 1018

Congettura debole: ogni numero dispari > 5 è somma di tre primi
(dimostrata da Helfgott, 2013)
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La congettura dei primi gemelli

Una coppia (p, q) di numeri primi è detta coppia di primi gemelli se
q = p + 2. Esempi:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31)

Congettura

Esistono infiniti primi gemelli?

Maynard ha dimostrato che esistono infiniti p tali che p + 246 è primo.
Coppia gemella più grande conosciuta (2023):

(2996863034895 · 21290000 ± 1)

con oltre 388.000 cifre.

Marco Damele La magia dei numeri primi 18 Maggio 2025 11 / 24



La somma dei reciproci dei primi gemelli

Nel 1919, Viggo Brun introdusse la **cribratura di Brun**.∑
p primo

p+2 primo

(
1

p
+

1

p + 2

)
< ∞

Questa somma è detta **costante di Brun**:

B2 ≈ 1.902160583104 . . .

Marco Damele La magia dei numeri primi 18 Maggio 2025 12 / 24



La somma dei reciproci dei primi gemelli

Nel 1919, Viggo Brun introdusse la **cribratura di Brun**.

∑
p primo

p+2 primo

(
1

p
+

1

p + 2

)
< ∞
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La somma dei reciproci dei numeri primi

Domanda

Quanto vale la somma infinita dei reciproci dei numeri primi?∑
p primo

1

p
=?

Consideriamo:

Sn =
n∑

k=1

1

pk

dove pk è il k-esimo numero primo.
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Esempi di somme parziali

S1 =
1

2
= 0.5

S2 = 0.5 +
1

3
= 0.8333

S3 = 0.8333 +
1

5
= 1.0333

. . .

S10 = 1.5334

La somma cresce lentamente, ma diverge:∑
p primo

1

p
= ∞

(Eulero)
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Primi come somma di quadrati

Teorema (Fermat)

Un primo p si scrive come somma di due quadrati:

p = a2 + b2

se e solo se p = 2 oppure p ≡ 1 (mod 4)
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Esempi

2 = 12 + 12

5 = 12 + 22

13 = 22 + 32

17 = 12 + 42

I primi 3, 7, 11, . . ., della forma 4k + 3, **non** si scrivono come somma
di due quadrati.
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La funzione π(x)

La funzione π(x) conta i numeri primi minori o uguali a x :

π(x) = #{p ≤ x | p primo}

π(10) = 4 (2, 3, 5, 7)

π(100) = 25

π(1000) = 168

Marco Damele La magia dei numeri primi 18 Maggio 2025 17 / 24



Teorema dei numeri primi

π(x) ∼ x

log x
per x → ∞

Una stima più precisa:

Li(x) =

∫ x

2

dt

log t
, π(x) ∼ Li(x)
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Riepilogo: Numeri Complessi e Parte Reale

Un numero complesso si scrive come:

z = x + iy , con x , y ∈ R e i2 = −1

La parte reale di z è il numero reale x , indicata come:

ℜ(z) = x

La parte immaginaria di z è il numero reale y , indicata come:

ℑ(z) = y

I numeri complessi possono essere rappresentati nel piano complesso,
con l’asse orizzontale per la parte reale e quello verticale per la parte
immaginaria.
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Funzioni Complesse e Zeri

Una funzione complessa è una funzione che mappa numeri
complessi in numeri complessi:

f : C → C, z 7→ f (z)

Uno zero di una funzione complessa è un punto z0 ∈ C tale che:

f (z0) = 0

Funzione polinomiale:

f (z) = z2 − 1 ⇒ f (z) = 0 =⇒ z = ±1

Funzione esponenziale:

f (z) = ez − 1 ⇒ f (z) = 0 =⇒ z = 2kπi , k ∈ Z
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La funzione zeta di Riemann

Definizione

Per Re(s) > 1, la funzione zeta si definisce come:

ζ(s) =
∞∑
n=1

1

ns

Prodotto di Eulero

ζ(s) =
∏

p primo

1

1− p−s

Zeri:

Banali: s = −2,−4,−6, . . .
Non banali: 0 < Re(s) < 1

Ipotesi di Riemann: tutti gli zeri non banali hanno Re(s) = 1
2
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Zeri della funzione zeta

Gli zeri non banali di ζ(s) si trovano nella striscia 0 < Re(s) < 1
Tutti quelli conosciuti giacciono sulla retta Re(s) = 1

2
Questo è il cuore dell’Ipotesi di Riemann

Visualizzazione degli zeri complessi nella striscia critica
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Questo è il cuore dell’Ipotesi di Riemann

Visualizzazione degli zeri complessi nella striscia critica

Marco Damele La magia dei numeri primi 18 Maggio 2025 22 / 24



Ipotesi di Riemann e Distribuzione dei Numeri Primi

Ipotesi di Riemann: afferma che tutti gli zeri non banali della
funzione zeta di Riemann hanno parte reale uguale a 1

2 , cioè si
trovano sulla retta critica ℜ(s) = 1

2 nel piano complesso.

Conseguenze principali:
Teorema dei numeri primi: la funzione conteggio dei numeri primi
π(x) è asintoticamente equivalente a x

log x , con un errore controllato.

L’ipotesi di Riemann implica che l’errore è limitato da O(x1/2+ϵ) per
ogni ϵ > 0.
Distribuzione regolare dei numeri primi: una dimostrazione
dell’ipotesi fornirebbe una stima più precisa della distribuzione dei
numeri primi, riducendo le fluttuazioni impreviste tra di essi.
Congetture correlate: la veridicità dell’ipotesi di Riemann ha
implicazioni per altre congetture, come la congettura di Goldbach e la
congettura dei numeri primi gemelli.

Importanza: la dimostrazione dell’ipotesi di Riemann
rappresenterebbe un avanzamento fondamentale nella teoria dei
numeri, con ampie applicazioni in matematica e crittografia.
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Grazie per l’attenzione!
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