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Capitolo 1

L’anello degli interi di Gauss.

1.1 Definizione di Z [i| e norma.
Nel seguito C é considerato munito delle operazioni usuali di somma e prodotto.
Definizione 1. L’insieme degli interi di Gauss é [insieme:
Zi] :={a+ib:a,beZ} C C
e un generico elemento di Z [i] é detto intero di Gauss.
Proposizione 1. Z[i] ¢ un sottoanello di C.

Dimostrazione. Banalmente (Z [i] , +) ¢ un sottogruppo di C dato che, se a +ib e ¢+ id
sono elementi di Z [i], allora (a + ib) + (c+id) = (a+c¢) +i(b+d) € Z[i] e —(a + ib) =
—a + i(—=b) € Z]i]. Inoltre (a + ib)(c + id) = (ac — bd) + i(ad + bc) € Z]i] e poi
le =1+i0 € Z[i]. O

Segue dunque immediatamente dalla proposizione anteriore che (Z [i],+,-) ¢ un do-
minio di integrita (anello commutativo unitario in cui ab = 0 implica a = 0 0 b = 0).
La prima domanda cui siamo interessati a rispondere é: quali sono le unita di Z [i] (cioé
gli elementi invertibili di Z [i] rispetto al prodotto -)? Per farlo cogliamo I'occasione per
definire un oggetto importante, la norma di un intero di Gauss.

Definizione 2. Se o = a +ib € Z[i], ¢ detta norma di o il numero naturale N(a) =
a’+ v,

Con un calcolo diretto si mostra che Iapplicazione N: Z[i] — N ¢ moltiplicativa:
Va,v € Zi], N(ay) = N(a)N(v). Questo fatto ci permette di dimostrare in maniera
agevole la seguente proposizione.

Proposizione 2. Le unita di Z[i] sono 1, —1, i, —i.

Dimostrazione. Ovviamente 1, —1, i e —i sono unita di Z[i]. Mostriamo che sono le
uniche. Sia o = a + ib un’unita di Z[i] e sia v il suo inverso moltiplicativo, quindi
ay = 1. Allora N(a7y) =1 da cui N(a)N(vy) = 1 ovvero N(a) = 1. Segue che a*+b* = 1
e quindi le quattro possibilita: a = 1, b = 0, che portano ad a = 1; a = —1, b = 0, che
portano ad a = —1; a = 0, b = 1, che portano ad a = 7; e 'ultima, a = 0, b = —1, che
porta ad a = —i. O
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1.2 Z/[i] € un dominio euclideo.

In Z vale la proprieta notevole che ogni intero si scrive in maniera unica (a meno di
moltiplicare per 1 o —1) come prodotto di potenze di primi distinti. Ci si domanda se
tale proprieta valga anche in Z[i]. Come vedremo tra poco tale proprieta ¢ rispettata.
Diamo inanzitutto la definizione di primo in Z [i]:

Definizione 3. o € Z[i|\{0,1,—1,i, —i} & detto primo se p = ab implica che a & un’unita
oppure b & un’unita.

Osservazione 1. In generale se p & un primo di Z non é necessariamente primo in 7 [i].
Si pensi ad esempio a 5, che & primo in Z ma non in Z[i|, dato che 5 = (1 —2i)(1 + 2i).
Anche 2 ¢ primo in Z ma non in Z[i| dato che 2 = (1 —1i)(1+14). Ci sono tuttavia primi
di 7 che sono primi anche in Z[i]. Ad esempio 3 é un primo sia in Z che in Z[i]. Per
vedere questo fatto ragioniamo per assurdo. Supponiamo che 3 = ab con a,b € Z[i] e a,
b non unita di Z[i] e quindi N(a), N(b) > 1. Abbiamo che 9 = N(3) = N(a)N(b) da cui
N(a) =3 e N(b) = 3. Se quindi a = z + 1y abbiamo z* + y* = 3, da cui y* = 3 — 2%
Deduciamo che x € {—1,0,1}. Sex = —1 oz = 1 troviamo y* = 2 che ¢é assurdo essendo
2 primo in Z; se v = 0 troviamo y*> = 3 che ¢ assurdo essendo 3 primo in Z. Pit avanti
dimostreremo che se p & un primo di Z tale che p =3 (mod 4), allora p é primo in 7Z|i].

Per stabilire se un intero di Gauss € primo risulta utile anche la seguente:

Proposizione 3. Sia o € Z[i]. Se N(«a) é primo in Z, allora o & primo in Z [i].

Dimostrazione. Supponiamo che o = ab con a,b interi di Gauss. Siccome N(a) =
N(a)N(b) e N(«) & primo deduciamo che uno tra N(a) e N(b) vale 1 e quindi che uno
tra a e b ¢ un’unita. O]

Osservazione 2. [l viceversa non é vero. Se « é primo in Z[i], non necessariamente
N(a) & primo in Z. Si pensi ad esempio a 3 che & primo in Z[i] ma ha norma 9.

Definizione 4. Siano «, 5 € Z[i]. Diciamo che « divide B e scriviamo « | 5 se f = ay
per qualche v € Z i].

Osservazione 3. Osserviamo che se o, € Z[i] tali che a | 8, allora N(a) | N(B).
Infatti B = ary con vy € Z|i], da cui seque che N(B) = N(a)N(v) e quindi N(«) divide
N(B).

Ricordiamo allora la nozione di massimo comun divisore:

Definizione 5. Siano a, 8 € Z[i| non nulli. Un massimo comun divisore di o e 3 ¢ un
elemento d € Z[i] tale che d | o, d | B e d ha norma massimale.

Osservazione 4. Osserviamo che se a e f ammettono come massimo comun divisore d
allora anche —d, id, —id sono massimi comun divisori per o e 3. In effetti questi sono
gli unici massimi comun divisori di « e 3. Infatti se d e d' sono due massimi comun
divisori, allora d divide d' (mostrarlo per esercizio) quindi d" = dk con k intero di Gauss.

Segue che N(d') = N(d)N(k) = N(d')N(k) da cui N(k) =1 e quindi k é un’unita.

Definizione 6. Siano a, 5 € Z [i] non nulli. Essi sono detti coprimi, e scriviamo (a, ) =
1, se 1 ¢ un massimo comun divisore di o e [3.
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Enunciamo un teorema, dovuto a Bezout, che si dimostra in maniera analoga a a
quanto si fa in Z.

Teorema 1. Siano o, € Z[i] non nulli e d un massimo comun divisore tra « e (5.
Allora esistono x,y € Z[i| tali che d = ax + By. Inoltre a e B sono coprimi se e solo se
esistono x,y € Z 1] tali che 1 = ax + By.

Ricordiamo la seguente:

Definizione 7. Sia R un dominio di integrita. R é detto dominio euclideo se esiste una
funzione (detta funzione euclidea) 6: R\ {0} — N tale che:

Va,be R:b#0, de,re R:a=cb+r, cond(r) <d(b)Vr=0.
Teorema 2. Z[i] ¢ un dominio euclideo.

Dimostrazione. Mostriamo che N: Z[i] \ {0} — N ¢ una funzione euclidea. Siano
a,b € Z[i] - b # 0. Se b divide a allora a = ¢b per qualche ¢ € Z[i], e quindi la tesi &
soddisfatta con ¢ ed r = 0. Se invece b non divide a allora esiste x + iy € Z[i] tale che
N(ab™" — (z +iy)) < v/2/2 < 1, dove b~ & I'inverso moltiplicativo di b in C. Poniamo
allora ¢ = x +iyer = a—cb. Siaora M: C — N, 2 = m +in — m? + n?.
Similmente a come si fa per N si mostra che M & moltiplicativa e banalmente N ristretta
a Z[i] coincide con N. Adesso ¢ ed r sono elementi di Z [i] tali che a = ¢b + r e poiché
M(rb") = M(ab™ —¢) = M(ab™' — (z +iy)) < v2/2 < 1 si trova N(r) = M(r) <
M(b) = N(b). O

Ricordando che i domini euclidei sono domini a fattorizzazione unica, abbiamo il
seguente corollario:

Corollario 1. Z[i] ¢ un dominio a fattorizzazione unica (UFD). Ovvero, se o € Z[i] \
{0,1, —1,4,—1}, allora esistono py,...,p, primi di Z[i] tali che:

O =pi-- P

Inoltre, se qu,...,qm sono primi di Z[i] tali che « = q1 -+ @, allora n = m e Vi =
1,...,n 35 €{1,...,n} tale che p; = ug; per qualche unita u di Zi].

Esercizio 1.2.1. Nel prossimo capitolo faremo ampio uso dei sequenti fatti che
lasciamo come stimolanti esercizi per il lettore (alcuni sono immediati).

1. Provare che, se o € Z[i|, allora N(a) =0 (mod 2) < 1+i|a.

Se a, f € Z[i] con N(B) | N(«), & vero che 5| a?

Se o, B € Z[i] con N(B) = N(«), & vero che f = ua per qualche unita v di Z [i]?
Se a, € Z[i] con (N(B), N(a)) =1, provare che (c, ) = 1.

Siano a, B,y € Z|i] con (o, ) =1 e o | By. Provare che a | 7.

Siano «, B,y € Z1i] con (o, ) =1, a| v e B |~. Provare che a5 | .

NS & e e

SeacZ[i|]\{0} ed| a e N(d) = N(a), provare che d = ua per qualche unita u
di Z.[i].
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8. Se a € Z[i] e u unita allora (o, u) = 1.

9. Se a, € Zli] ammettono un’unita come massimo comun divisore, allora sono
coprima.

10. Fattorizzare in primi 3 + 41 e 2319 + 1694;.

11. Se o, 8 € Z[i] e d & un loro massimo comun divisore, allora d |a+ 3, d | a— [ e
d|ap.
12. Provare che 141 & primo.

13. Se w € Z[i] & un’unita, dimostrare che esiste v € Z[i] tale che u = v®.
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Capitolo 2

Applicazioni alle equazioni diofantee.

Per noi un’equazione diofantea ¢ un’equazione della forma P(xq,...,z,) = 0, essen-
do P(xy,...,z,) un polinomio a coefficienti interi in n incognite. Ovvero formalmente
P(z1,...,x,) € Z]z1,...,x,]. Risolvere 'equazione diofantea P(xy,...,x,) = 0 signifi-
ca trovare tutti gli interi aq,...,a, tali che P(ay,...,a,) = 0. Generalmente, risolvere
un’equazione diofantea non é affatto semplice. Si pensi alla celebre equazione diofantea
proposta da Fermat: z" 4+ y™ = 2" con n naturale maggiore di 2. Prima di essere com-
pletamente risolta, si sono dovuti attendere piu di 300 anni. Con la teoria sviluppata
per 'anello degli interi di Gauss Z [i], possiamo risolvere alcune equazioni diofantee che
a prima acchito possono sembrare ostiche.

2.1 Le terne Pitagoriche.

2

La prima equazione diofantea che vogliamo studiare ¢ 2% + y* = 22. Ovvero vogliamo
2

determinare tutte le terne di interi (A, B, C) soluzioni dell’equazione x? +3? = 22, ovvero
tali che A% + B? = (C?. Banalmente le terne (0,%,k) e (k,0,k), al variare di k in Z,
sono soluzione. Tuttavia esistono anche altre terne di soluzioni, come (3,4, 5). Vogliamo
determinarle tutte nel caso (A, B) = 1. Sebbene ci siano vari metodi per farlo, noi useremo
il fatto che Z [i] ¢ un dominio a fattorizzazione unica. Per lo studio pin dettagliato sulle
terne pitagoriche si rimanda il lettore alle note “L’ultimo teorema di Fermat nel caso
n = 4k che si trova nei file PDF del gruppo Facebook “Problemi di Matematica’.

Teorema 3. Se A, B,C sono interi tali che A* + B> = C? e (A, B) = 1, allora esistono
m,n interi tali che A = m? —n?, B = 2mn, C = m?+n? oppure A = 2mn, B = m? —n?,
C =m? +n?. Viceversa, per ogni m,n € Z, si ha (m* —n?)* + (2mn)? = (m? + n?)%

Dimostrazione. Abbiamo (A —iB)(A+iB) = C? Ma A —iB e A+ iB sono coprimi in
Z [i]. Infatti, sia d un massimo comun divisore tra essi. Proviamo che d & unita. Poiché
d|A—iBed| A+iB, allora d divide la loro somma e la loro differenza: d | 2A e d | i2B
e quindi d | 2A e d | 2B (poiché (d,i) = 1). Se proviamo che (d,2) = 1 allora d | A e
d| B ed essendo A e B coprimi in Z (e quindi coprimi anche in Z [i]) si avrebbe d unita.
Sia M un massimo comun divisore tra d e 2, e supponiamo per assurdo che M non sia
un unitad. Abbiamo che M | 2 = —i(1 +)? quindi M | (1 4 7)? (poiché (M, —i) = 1).
Adesso vediamo che 1+ ¢ divide M. Di fatto sia R un massimo comun divisore tra M e
1 +1i. Se R ¢ un’unita, allora (M,1+1i) = 1, e segue che M | 1 4+ 4. Se invece R non &
unita allora, poiché R divide 1+ i si avrebbe che 1+ = uR, e quindi R = v(1 +14) con v
unita. Allora 1+ ¢ divide R, da cui segue che N(R) é pari. Tuttavia R divide M quindi

7
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N(R) divide N(M), da cui segue che N (M) & pari, ma M divide d quindi N(d) é pari
ma d divide C?, quindi N(d) divide N(C?) = C*, da cui segue che C* ¢ pari, e quindi C
é pari. Allora, essendo A e B coprimi in Z, si ha che A =1 (mod 2)e B =1 (mod 2), da
cui A2 =1 (mod 4) e B> =1 (mod 4), da cui segue che C? = 2 mod 4, che ¢ assurdo
perché i quadrati modulo 4 sono solo 0 e 1. Conseguentemente R € unita e quindi M
divide 1+4. Allora non essendo M unita, si ha che M = h(141) con h unita e si perviene
quindi all’assurdo che C' & pari. Conseguentemente M & unita e quindi (d,2) = 1 e cioé d
¢ unita. Quindi A —iB e A+ iB sono coprimi in Z [i]. Adesso, siccome A —iB e A+iB
sono coprimi e il loro prodotto ¢ un quadrato per il fatto che Z [i] ¢ UFD esiste un unita
u e due interi ¢, d tali che A+ iB = u(m + in)?* = u(m? — n? + i2mn). Di conseguenza,
identificando parte reale e immaginaria se:

1. u = 1: troviamo A = m? —n?, B = 2mn, C = m? + n?;

2. u = —1: troviamo A = n? —m?, B =2(—m)n, C =m? +n?
3. u=1: troviamo A = 2(—m)n, B =m?* —n? C =m? + n?
4. uw = —i: troviamo A = 2mn, B = n? —m?, C = m? + n?.

In ogni caso esistono sempre due interi ¢, d tali che A = ¢ — d?, B = 2cd, C = % + d?,
oppure A = 2cd, B = ¢* — d?, C' = ¢* + d?. 1l viceversa del teorema ¢ immediato. O

2.2 Una cubica

Un’equazione diofantea simile alla precedente ¢ la seguente: x? + y? = z3. Anche per

questa, usiamo la fattorizzazione unica di Z [i| per ricavare tutte le terne primitive cioé
quelle per cui (z,y) = 1.

Teorema 4. Se a,b, c sono interi tali che a®>+b* = ¢ con (a,b) = 1, allora esistono m,n

interi tali che a = m?® —3mn?, b = 3m?*n —n3, c = m?+n?. Viceversa per ogni m,n € 7Z,
(m? — 3mn?)* + (3m?*n — n?)? = (m? + n?)3.

Dimostrazione. 11 viceversa della dimostrazione ¢ immediato. Adesso osserviamo che c é
dispari. Infatti a e b sono coprimi, quindi non possono essere entrambi pari. Se fossero
entrambi dispari avremmo che ¢® = 2 (mod 8), che ¢ assurdo. Segue che (a meno di
scambiare i nomi) a ¢ pari e b ¢ dispari. Segue che ¢ ¢ dispari. Adesso (a—ib)(a+1ib) = >
Tuttavia a — ib e a + ib sono coprimi. Infatti se d & un massimo comun divisore di a — ib
e a + ib, allora d divide 2a, d divide 2b e d divide ¢*. Quindi N(d) divide 4a?, 4b* e 5.
Segue che N(d) ¢ dispari quindi N(d) divide a* e N(d) divide *. Ma poiché¢ a e b sono
coprimi segue che N(d) ¢ 1 quindi d & unita. Adesso siccome Z[i] ¢ UFD e ogni unita é
il cubo di un intero di Gauss si ha che a +ib = (m + in)® con m,n interi. Uguagliando
parte reale e immaginaria si trova a = m3 — 3mn?, b = 3m?n — n?, c = m? + n%. O

2.3 Un’equazione di Mordell.
Le equazioni di Mordell sono equazioni diofantee della forma 3? = 23 + k, con k intero

non nullo. Si & dimostrato che il numero di soluzioni intere di tale equazione é un numero
finito per ogni k. Studiamo il caso k = —1 usando la fattorizzazione unica di Z [7].
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Teorema 5. L unica soluzione intera dell’equazione di Mordell y* = 23 — 1 ¢ (1,0).

Dimostrazione. Ovviamente (1,0) & soluzione. Viceversa mostriamo che se (z,y) ¢ solu-
zione allora z = 1 e y = 0. Di fatto 2 = (y — i)(y + i). Vediamo che y — i e y + 7 sono
coprimi. Sia d un massimo comun divisore tra essi. Allora d divide 2i = (1 + )% quindi
(1+1)* = vd per qualche v € Z [i]. Per il fatto che Z[i] ¢ UFD e 1+ & primo, abbiamo
che d ¢ unita oppure d = 1 + 7 oppure d = (1 +14)%. Se per assurdo d non ¢ unita, allora
1 + 4 divide d e quindi 1 + ¢ divide 3. Segue che 2 divide 2% e quindi « ¢ pari allora
y*>+1 =0 (mod 4) che ¢ assurdo. Quindi d ¢ unita. Allora esistono m,n interi tali che
y+i= (m+in)3. Uguagliando parte reale e immaginaria ricaviamo che y = m(m? — 3n?)
e 1 =n(3m? —n?). Quindi se n = 1 si trova 3m? = 2 che ¢ assurdo, quindi n = —1 che
porta a m = 0 e quindi la soluzione (1,0). O

Usando 'anello Z [i], Lebesgue ha dimostrato che per ogni naturale > 1 I’equazione
y?> = 2¢ — 1 non ha soluzioni con z, y non nulli.

Esercizio 2.3.1. Per i temerari consiglio i sequenti esercizi, un po’ pit, complicati
dei precedenta.

1. Risolvere l'equazione diofantea x + 4 = 3.
2. Risolvere l'equazione diofantea x* + 9 = y°.

3. Siano a,b, ¢, d naturali positivi tali che a®>+b* = cd: Provare che esistono x,vy, z, w,t
intert tali che:

a=t(xz —yw), b=t(zw+yz), c=t@*+y?), d=t(z*+w?).
4. Provare che se a e b sono naturali positivi tali che ab = ¢* + 1 per qualche intero c
non nullo, allora a e b sono somma di due quadrati.
5. Provare che sep e un primo di Zi della forma 4k+1, allora é somma di due quadrata.
2

6. Risolvere l’equazione diofantea dovuta a Euler: dxy — v —y = 2°.

7. Trovare tutti i triangoli rettangoli diofantei di R*, cioe tutte le quaterne (A, B, C, D)
di interi tali che A?2 + B% 4+ C? = D2,
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Somma di quadrati.

Teorema 6. Sia p € Z un primo tale che p = a®> + b con a,b € Z. Se p = c* + d?* con

c,d € Z allora:
a=cANb=dVa=—-cNb=—-dVa=dANb=cVa=—-dANb=—-cVa=—cANb=

dVa=—-cANb=dVa=—-dANb=cVa=dNb= —c.

Dimostrazione. Abbiamo che, essendo p primo, a + ib, a — ib, ¢ + id, e ¢ — id hanno
norma p e quindi sono primi. Poiché poi (a + ib)(a — ib) = (¢ + id)(c — id), per il fatto
che Z[i] ¢ un dominio a fattorizzazione unica, abbiamo che a + ib = u(c + id) oppure
a + ib = u(c — id) per qualche unita u. Considerando tutti i possibili casi (v = 1, —1, 1,
—i) si perviene alla conclusione del teorema. O

Possiamo riassumere il teorema precedente dicendo che, se un primo di Z si scrive
come somma di due quadrati p = a® + b?, allora ¢’¢ un unico modo per fare cio (a meno,
come dice il teorema, di cambiare segno ad a e b). Tale proprietd non é pero vera per
interi generici. Ad esempio 50 si scrive come 25 + 25 = 52 + 52, ma anche come 1% 4 72.
Come applicazione del teorema vediamo il seguente esempio.

Esempio 1. Consideriamo il quinto numero di Fermat: F5 = 22° 11 = 4294967297.
Fermat pensava che Fy fosse primo, tuttavia Fuler ha trovato che si puo scrivere come
somma, di due quadrati in due modi diversi: 2% +1 = (2'9)2 412 = 6226424204492, Con-
seque che Fs non ¢ primo (abbiamo dimostrato che non é primo senza necessariamente
trovare un suo divisore non banale!). Sempre Euler trovo che un divisore non banale di

F5 era 641.

Il nostro prossimo obbiettivo é quello di determinare tutti i primi di Z che sono primi
in Z [i]. In parte ci da la risposta il seguente teorema.

Teorema 7. Sia p € Z' un primo. Allora p é primo in Z[i] se e solo se p non é somma
di due quadrati.

Dimostrazione. Se p ¢ primo in Z[i] e per assurdo p = a* + b? allora p(a — ib)(a + ib)
e quindi p non & primo in Z [i], assurdo. Se invece p non ¢ somma di due quadrati
supponiamo che p = a7y con a, v € Z[i] non unita. Allora p?> = N(a)N(v), da cui segue
che N(a) = p e quindi se a = a + ib troviamo p = a® + b? che ¢ assurdo. O

La condizione non essere somma di due quadrati non ¢ di facile verifica. Per questo
ci viene in soccorso il seguente importante teorema (che ci dice quando un primo di Z é
somma di due quadrati.)

11
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Teorema 8. Sia p € Z* un primo. Allora p é somma di due quadrati < p =1
(mod 4) oppure p = 2.

Dimostrazione. Se p = a* + b* e p # 2, proviamo che p = 1 (mod 4). Se per assurdo
cosi non fosse, essendo p dispari, si avrebbe p = 3 (mod 4) quindi a? + b* = 3 (mod 4).
Seguirebbe che, senza perdere generalita, a> = 1 (mod 4) e b*> = 2 (mod 4), che ¢ assurdo
perché i quadrati mod 4 sono 0 e 1. Viceversa, supponiamo che p =20 p =1 (mod 4) e
proviamo che é somma di due quadrati. Ovviamente 2 soddisfa tale proprieta in quanto
2 = 1?2 + 12, Supponiamo ora che p = 1 (mod 4), diciamo p — 1 = 4k con k naturale
non nullo. Consideriamo il polinomio XP~! — 1 = (X®=1/2 — 1)(xr-D/2 1 1) € Z, [X].
Per il piccolo teorema di Fermat il polinomio X?~* — 1 ha p — 1 radici in Z,, mentre il
polinomio X ®~1/2—1 ha al pitt (p—1)/2 radici in Z,. Segue che il polinomio X ?~1/241
ha almeno una radice in Z,. Quindi esiste ¢ € Z tale che ¢?~1/2 = —1 (mod p) e quindi
esiste un intero m tale che m? = —1 (mod p). Segue che p | m?+ 1, cioé¢ m?+1 = pn con
n intero e quindi (m — i)(m + i) = pn. Supponiamo per assurdo che p non sia somma di
due quadrati. Allora per il teorema precedente p & primo in Z [i]. Allora p | m+ i oppure
p | m — i, da cui segue che esiste qualche intero di Gauss g tale che m + i = gp oppure
m — i = gp. Ma questo ¢ assurdo in entrambi i casi, perché porterebbe a p = 1. Quindi
p € somma di due quadrati. O

Segue che:
Teorema 9. Sia p € Z* un primo. Allora p ¢ primo in Z[i] <= p =3 (mod 4).

Esercizio 3.0.1.

Provare che un interon > 1 é somma di due quadrati <= Vp, p primo tale che p | n e
p =3 (mod 4), allora p compare nella fattorizzazione di n un numero pari di volte.
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